PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 3 |

Tytuł artykułu

Salt stress tolerance of methylotrophic bacteria Methylophilus sp. and Methylobacterium sp. isolated from coal mine spoils

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Two methylotrophic strains of Bina coalmine spoil BNV7b and BRV25 were identified based on physiological traits and 16S rDNA sequence as Methylophilus and Methylobacterium species. The strains exhibited similar carbon utilization but differed in N utilization and their response to the metabolic inhibitors. Methylophilus sp. was less tolerant to salt stress and it viability declined to one tenth within 4 h of incubation in 2M NaCl due to membrane damage and leakage of the intracellular electrolytes as evident from malondiaaldehyde (MDA) assay. In 200 mM NaCl, they exhibited increased superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity while in 500 mM NaCl, enzyme activities declined in Methylophilus sp. and increased in Methylobacterium sp. Among exogenously applied osmoprotectants proline was most efficient; however, polyols (mannitol, sorbitol and glycerol) also supported growth under lethal NaCl concentration.

Wydawca

-

Rocznik

Tom

62

Numer

3

Opis fizyczny

p.273-280,fig.,ref.

Twórcy

autor
  • Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU)
autor
  • Department of Botany, Banaras Hindu University, India
autor
  • Department of Botany, Banaras Hindu University, India
autor
  • Department of Botany, Banaras Hindu University, India
autor
  • Department of Botany, Banaras Hindu University, India
autor
  • Department of Botany, Banaras Hindu University, India

Bibliografia

  • Asada K. 1984. Chloroplasts: formation of active oxygen and its scavenging. Meth. Enzymol. 105: 422–435.
  • Beauchamp C. and I. Fridovich. 1971. Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal. Chem. 44: 276–287.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Chem. 72: 248–254.
  • Cakmak I. and J. Horst. 1991. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxides activities in root tips of soybean (Glycine max). Physiologia Plantarum 83: 463–468.
  • Clairbone A. 1985. Catalase activity. In: Greenwald RA. (Ed.), Handbook of methods for oxygen radical research. CRC Press, Florida, pp. 283–284.
  • Ellis R.J., P. Morgan, A.J. Weightman and J.C. Fry. 2003. Cultivation-dependent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69: 3223–3230.
  • FAO. 2006. Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service, Rome [online] Available at URL: http://www.fao.org/ag/agl/agll/spush (April, 2009).
  • Fournier D., S. Trott, J. Hawari and J. Spain. 2005. Metabolism of the aliphatic nitramine 4-nitro-2, 4-diazabutanal by Methylobacterium sp. strain JS178. Appl. Environ. Microbiol. 71: 4199–4202.
  • Giri D.D., P.N. Shukla, Singh Ritu Ajay Kumar and K. D. Pandey. 2012. Substrate utilization of stress tolerant methylotrophs isolated from revegetated heavy metal polluted coalmine spoil. World J. Microbiol. Biotechnol. DOI 10.1007/s11274-012-1219-7
  • Gómez J.M., A. Jiménez, E. Olmos and F. Sevilla. 2004. Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J. Exptl. Bot. 55: 119–130.
  • Guillouet S. and J. M. Engasser. 1996. Growth of Corynebacterium glutamicum in ammonium and potassium-limited continuous cultures under high osmotic pressure. Appl. Microbiol. Biotechnol. 46: 291–296
  • Halliwell B. and J.M.C. Gutteridge. 1986. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophy. 246: 501–514.
  • Hanson R.S. 1998. Ecology of methylotrophic bacteria. In: Burlage, RS, Atlas R, Stahl D, Geesey G, Sayler G (Eds.), Techniques in Microbial Ecology. Oxford University Press, New York, pp. 137–162.
  • Harinasut P., T. Takabe, T. Akazawa, M. Tagaya, T. Fukui. 1988. Characterization of an ATPase associated with the inner envelope membrane of amylopasts from suspension cultured cells of sycamore Acer pseudoplantanus L. Plant Physiol. Sep 88: 119–24.
  • Hoque M.A., E. Okuma, N.A. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J. Plant. Physiol. 164: 553–561.
  • Ikeuchi T., A. Ishida, M. Tajifi and S. Nagata. 2003. Induction of salt tolerance in Bacillus subtilis IFO 3025. J. Biosci. Bioengg 96: 184–186.
  • Ivanova E., N. Doronina and Y. Trotsenko. 2007. Hansschlegelia plantiphila gen. nov. sp. nov., a new aerobic restricted facultative methylotrophic bacterium associated with plants. Syst. Appl. Microbiol. 30: 444–452.
  • Kamali M. and H. Manhouri. 1969. A modified orcinol reaction for RNA determination. Clinical Chemistry 15: 390–392.
  • Kets E.P.W., J.A.M. de Bont and H.J. Heipieper. 1996. Physiological response of Pseudomonas putida S12 subjected to reduced water activity. FEMS Microbiology Letters 139: 133–137.
  • Korber D.R., A. Choi, G.M. Wolfaardt and D.E. Caldwell. 1996. Bacterial plasmolysis as a physical indicator of viability. Appl. Environ. Microbiol. 62: 3939–3947.
  • Li R. and R.S. El-Mallakh. 2004. Differential response of bipolar andnormal control lymphoblastoid cell sodium pump to ethacrynic acid. J. Affective Disorders 80: 11–17.
  • Lutts S., J.M. Kinet and J. Bouharmont. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany 78: 389–398.
  • Madhaiyan M., S. Poonguzhall, and T. Sa. 2001. Metal tolerating methylotrophic bacterium reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69: 220–228.
  • Maness P.C., S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, and W.A. Jacoby. 1999. Bactericidal activity of photocatalytic TiO₂ reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65: 4094–4098.
  • Moore S. and W. H. Stein. 1948. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 176: 367–388.
  • Myers J. and W.A. Kratz. 1955. Relations between pigment content and photosynthetic characteristics in a blue green alga. J. Gen. Physiol. 39: 11–21.
  • Ning S.B., H.L. Guo, L. Wang and Y.C. Song. 2002. Salt stress induces programmed cell death in prokaryotic organism Anabaena. J. Appl. Microbiol. 93: 15–28.
  • Okuma E., K. Soeda, M. Tada and Y. Murata. 2000. Exogenous proline mitigates the inhibition of growth of Nicotiana tabacum cultured cells under saline conditions. Soil Sci. Plant Nutr. 46: 257–263.
  • Pasamba EM, R.M. Demigillo and A.C. Lee. 2007. Antibiograms of pink pigmented facultative methylotrophic bacterial isolates from various sources. Philippine Scientist 44: 47–56.
  • Pathak H. and D.L.N. Rao. 1998. Carbon and nitrogen mineralization from added organic matter in saline and alkaline soils. Soil Biol. Biochem. 30: 695–702.
  • Robert H., C. Le Marrec, C. Blanco and M. Jebbar. 2000. Glycine, betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila. Appl. Environ. Microbiol. 66: 509–517.
  • Ronsch H., R. Krämer and S. Morbach. 2003. Impact of osmotic stress on volume regulation, cytoplasmic solute composition and lysine production in Corynebacterium glutamicum MH20-22B. J. Biotechnol. 4: 104: 87–97.
  • Sagisaka S. 1976. The occurrence of peroxide in perennial plant Populas gebrica. Plant Physiol. 57: 308–309.
  • Shamseldin A., J. Nyalwidhe and D. Werner. 2006. A proteomic approach towards the analysis of salt tolerance in Rhizobium etli and Sinorhizobium meliloti strains. Current Microbiol. 52: 333–339.
  • Simard R.R. 1993. Ammonium acetate-extractable elements. In: Carter, M.R. (Ed.), Soil Sampling and Methods of Analysis, Canadian Society of Soil Science, Lewis Publishers, Boca Raton, pp. 39–42.
  • Sy A., E. Giraud, P. Jourand, N. Garcia, A. Willems, P. de Lajudie, Y. Prin, M. Neyra, M. Gillis, C. Boivin-Masson and B. Dreyfus. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 183: 214–220.
  • Walker J.R., N.A. Shafiq and R.G.Allen. 1971. Bacterial cell division regulation: physiological effects of crystal violet on Escherichia coli ion+ and ion- strains. J. Bacteriol. 108: 1296–1303.
  • Wichern J., F.Wichern, and R.G.Joergensen.2006. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137: 100–108.
  • Wyn Jones R.G. and A. Pollard. 1983. Proteins, enzymes and inorganic ions. In: Lauchli, A., Bieleski, R.L. (Eds.), Inorganic plant nutrition: Encyclopedia of plant physiology. Springer, Berlin, pp. 28–562.
  • Yellore D. 1998. Production of poly-3-hydroxybutyrate from lactose and whey by Methylobacterium sp. ZP24. Lett. Appl. Microbiol. 26: 391–394.
  • Yemm E.W. and A.J. Willism. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical J. 57: 508–514.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f3f2e56a-f953-4bb1-a1c7-1dfc227c39d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.