PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Characterizing bacteria and methanogens in a balloon[type digester fed with dairy cattle manure for anaerobic mono-digestion

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, bacteria and methanogens involved in the decomposition of dairy cattle manure have been characterized via cultivation on selective microbiological media by the viable plate count technique. In addition, DNA was extracted from digested samples, and the 16S rRNA gene was amplified using six primer sets specific to bacterial and archaeal domain via PCR. The sequences of the PCR products were determined and compared to similar sequences in the GenBank database using the BLASTN tools to identify the closest relatives. By culture, E. coli, Salmonella, Shigella, and Campylobacter species were identified and belonged to the phylum Proteobacteria. Following, 16S rRNA analysis, Firmicutes (80%) was the most dominant bacterial phylum represented by the predominant order Clostridiales and genus Clostridium. Other members belonged to the phyla Proteobacteria and Spirochaetes. The phylum Euryarchaeota (100%) was the only observed archaeal domain with members that belonged to the dominant class Methanomicrobia and genus Methanocorpusculum. Other members were related to the order Methanobacteriales and Methanosarcinales. Results suggested that Clostridium sp, Clostridium related organisms, and other acidogens were responsible for the deconstruction of biomass-generating substrates metabolized by Methanocorpusculum and Methanobrevibacter species to produce methane via the fundamental hydrogenotrophic pathway

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1287-1293,ref.

Twórcy

autor
  • Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice, Eastern Cape Province, South Africa
  • South Africa Medical Research Council Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape Province, South Africa
autor
  • Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice, Eastern Cape Province, South Africa
autor
  • Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice, Eastern Cape Province, South Africa
autor
  • Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice, Eastern Cape Province, South Africa
  • South Africa Medical Research Council Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape Province, South Africa

Bibliografia

  • 1. RESENDE J.A., GODON J-Q., BONNAFOUS A., ARCURI P.B., SILVA V.L., OTENIO M.H., DINIZ C.G. Seasonal variation on microbial community and methane production during anaerobic digestion of cattle manure in Brazil. Microbial Ecology, 71, 735, 2016.
  • 2. GERBA C.P., SMITH J.E. JR. Sources of pathogenic microorganisms and their fate during land application of wastes. Journal of Environmental Quality, 34, 42, 2005.
  • 3. LOZANO C.J.S, MENDOZA M.V., MARIELA CARRENO DE ARANGO M.C., MONROY E.F.C. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment. Waste Management, 29, 704, 2009.
  • 4. UZODINMA E.O., OFOEFULE A.E., EZE J.I., MBAEYI I., ONWUKA N.D. Effect of some organic wastes on the biogas yield from carbonated soft drink sludge. Scientific Research and Essays, 3, 401, 2008.
  • 5. HUTCHISON M.L., WALTERS L.D., AVERY S.M., MUNRO F., MOORE A. Analyses of livestock production, waste storage and pathogen levels and prevalences in farm manures. Applied and Environmental Microbiology, 71, 1231, 2005.
  • 6. SPIEHS M., GOYAL S. Best Management practices for Pathogen Control in Manure Management Systems; University of Minnesota Extension: St. Paul, MN, USA, 2007; M1211.
  • 7. LEVÉN L., ERIKSSON A.R.B., SCHNŰRER A. Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiology Ecology, 59, 683, 2007.
  • 8. CHEN Y., CHENG J.J., CREAMER K.S. Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99, 4044, 2008.
  • 9. CIOABLA A.E., LONEL L., DUMITREL G.A., POPESCU F. Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnology for Biofuels, 5, 39, 2012.
  • 10. FACCHIN V., CAVINATO C., FATONE F., PAVAN P., CECCHI F., BOLZONELLA D. Effect of trace elements supplementation on the mesophilic anaerobic digestion of food wastes in batch trials: the influence of inoculum origin. Biochemical Engineering Journal, 70, 71, 2013.
  • 11. CASTRO-VÁRQUEZ L., DÍAZ-MAROTO M.C., DE TORRES C., PÉREZ-COELLO M.S. Effect of geographical origin on the chemical and sensory characteristics of chestnut honeys. Food Research International, 43 (10), 2335, 2010.
  • 12. SAKAR S., YETILMEZSOY K., KOCAK E. Anaerobic digestion technology in poultry and livestock waste treatment. Waste Management and Research, 27, 3, 2009.
  • 13. ACADEMY OF SCIENCE OF SOUTH AFRICA. The state of green technologies in South Africa. Academic of Science of South Africa (ASSAf), Pretoria, South Africa, 92, 2014.
  • 14. ANTONI D., ZVERLOV V.V., SCHWARZ W.H. Biofuels from microbes. Applied Microbiology and Biotechnology. 77, 23, 2007.
  • 15. ZIGANSHIN A.M., SCHMIDT T., SCHOLWIN F., II’INSKAYA O.N., HARMS H., KLEINSTEUBER S. Bacteria and archaea involved in anaerobic digestion of distillers grains with soluble. Applied Microbiology and Biotechnology, 89, 2039, 2011.
  • 16. ABENDROTH C., VILANOVA C., GŰNTHER T., LUSCHNIG O., PORCAR M. Eubacteria and archaea communities in seven mesophilic anaerobic digester plants in Germany. Biotechnology for Biofuels, 8, 87, 2015.
  • 17. POUDEL R.M., JOSHI D.R., DHAKAL N.R., KARKI A.B. Anaerobic digestion of sewage sludge mixture for the reduction of indicator and pathogenic microorganisms. Scientific World, 8, 47, 2010.
  • 18. THAKER H.C., BRAHMBHATT M.N., NAYAK J.B. Study on occurrence and antibiogram pattern of Escherichia coli from raw milk samples in Anand, Gujarat, India. Veterinary World, 5 (9), 556, 2012.
  • 19. CHEESBROUGH M. District Laboratory Practice in Tropical Country, Part 2: Microbiology. Cambridge, UK: Cambridge University Press, 2000.
  • 20. SAMBROOK J., RUSSELL D.W. Molecular cloning- A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2001.
  • 21. CORGIÉ S.C., BEGUIRISTAIN T., LEYVAL C. Spatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Lolium perenne L. Applied and Environmental Microbiology, 70 (6), 3552, 2004.
  • 22. BANNING N., BROCK F., FRY J.C., PARKES R.J., HORNIBROOK E.R.C., WEIGHTMAN A.J. Investigation of the methanogen population structure and activity in a brackish lake sediment. Environmental Microbiology. 7 (7), 947, 2005.
  • 23. KIM W., HWANG K., SHIN S.G., LEE S., HWANG S. Effect of high temperature on bacterial community dynamics in anaerobic acidogenesis using mesophilic sludge inoculum. Bioresource Technology, 101, S17-S22, 2010.
  • 24. GANTNER S., ANDERSSON A.F., ALONSO-SÁEZ L., BERTILSSON S. Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. Journal of Microbiological methods, 84, 12, 2011.
  • 25. ILLMER P., REITSCHULER C., WAGNER A.O., SCHWARZENAUER T., LINS P. Microbial succession during thermophilic digestion: The potential of Methanosarcina sp. PLOSONE, 9 (2), e86967, 2014.
  • 26. HALL T.A. BioEdit: a user-friendly biological sequence alignment, editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Ser 41, 95, 1999.
  • 27. ALTSCHUL S.F., GISH W., MILLER W., MYERS E.W., LIPMAN D.J. Basic local alignments search tool. Journal of Molecular Biology, 215, 403, 1990.
  • 28. GIRIJA D., DEEPA K., XAVIER F., ANTONY I., SHIDHI P.R. Analysis of cow dung microbiota-A metagenomic approach. Indian Journal of Biotechnology, 12, 372, 2013.
  • 29. GROSSKOPF R., JANSSEN P.H., LIESACK W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Applied and Environmental Microbiology, 64, 960, 1998.
  • 30. WANG Y., QIAN P-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE, 4 (10), e7401, 2009.
  • 31. MANYI-LOH C.E., MAMPHWELI S.N., MEYER E.L., OKOH A.I., MAKAKA G., SIMON M. Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester). International Journal of Environmental Research and Public Health, 11, 7184, 2014.
  • 32. WIRTH R., KOVÁCA E., MARÓTI G., BAGI Z., RAKHELY G., KOVÁCS K.L. Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnology for Biofuels, 5, 41, 2012.
  • 33. PITERINA A.V., BARTLETT J., PEMBROKE J.T. Molecular analysis of bacterial community DNA in sludge undergoing autothermal thermophilic aerobic digestion (ATAD): pitfalls and improved methodology to enhance diversity recovery. Diversity, 2, 505, 2010.
  • 34. BERNARDET J.F., BOWMAN J.P. The genus Flavobacterium. The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd sdn (Dworkin, M, ed), http://link.springer-ny.com/link/service/books/10125).Springer-Verlag, New York, USA, 2003.
  • 35. REGUEIRO L., VEIGA P., FIGUEROA M., ALONSO-GUTIERREZ J., STAMS A.J.M., LEMA J.M., CARBALLA M. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiological Research, 167, 581- 589, 2012.
  • 36. MOSET V., POULSEN M., WAHID R., HØJBERG O., MØLLER H.B. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microbial Biotechnology, 8 (5), 787, 2015.
  • 37. LIU F.H., WANG S.B., ZHANG J.S., ZHANG J., YAN X., ZHOU H.K., ZHAO G.P., ZHOU Z.H. The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. Journal of Applied Microbiology, 106, 952, 2009.
  • 38. WALTER A., KNAPP B.A., FARBMACHER T., ENBER C., INSAM H., FRANKE-WHITTLE I.H. Searching for links in the biotic characteristics and abiotic parameters of nine different biogas plants. Microbial Biotechnology 5, 717, 2012.
  • 39. SONG M., SHIN S.G. HWANG S. Methanogenic population dynamics assessed by real-time quantitative PCR in sludge granule in up flow anaerobic sludge blanket treating swine waste water. Bioresource Technology, 101, 523, 2010.
  • 40. MOSET V., BERTOLINI E., CERISUELO A., CAMBRA M., OLMOS A., CAMBRA LÓPEZ M. Start-up strategies for thermophilic anaerobic digestion of pig slurry. Energy, 74, 389, 2014.
  • 41. ANDERSON I.J., SIEPRAWSKA-LUPA M., GOLTSMAN E., LAPIDUS A., COPELAND A., DEL RIO T.G., TICE H., DALIN E., BARRY K., PITLUCK S., HAUSER L., LAND M., LUCAS S., RICHARDSON P. WHITMAN W.B., KYRPIDES N.C. Complete genome sequence of Methanocorpusculum labreanum type strain Z. Standards in Genomic Sciences 1, 197, 2009.
  • 42. DE VRIEZE J., HENNEBEL T., BOON N., VERSTRAETE W. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresource Technology, 112, 1, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f21216fc-21f8-4f93-9ee2-3b0e3ab7c5eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.