PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 33 | 1 |

Tytuł artykułu

The first data on the genetic diversity of river amprey Lampetra fluviatilis (Linnaeus, 1758) from the Vistula river and Vistula Lagoon in Poland

Warianty tytułu

PL
Zmienność genetyczna minoga rzecznego z rzeki Wisły i Zalewu Wiślanego – badania wstępne

Języki publikacji

EN

Abstrakty

EN
The genetic characteristic of seriously threatened river lamprey Lampetra fluviatilis L. from Vistula river and Vistula lagoon (Poland) was described in the present paper. The study, based on the nine microsatellite markers, was conducted to determine the genetic diversity and population structure of river lamprey in Vistula river and Vistula lagoon in Poland. Observed heterozygosity ranged from 0.158 to 0.974 in lamprey from Vistula river, and 0.040 to 0.990 in lamprey from Vistula lagoon. The expected heterozygosity in river lamprey ranged 0.177–0.673 in specimens and 0.213–0.670 in population from Vistula lagoon. Eight loci appear to be diagnostic, due to occurrence of private alleles, for distinguishing the Vistula river and Vistula lagoon populations. The estimated effective population size (Ne) for the studied populations of river lamprey form Vistula river and Vistula lagoon equalled 72.4 (95% CI = 14.9–∞) and 25.8 (95% CI = 8.7–151.1), respectively. Constructed individual’s tree based on DAS genetic distances and the Principal Coordinates Analysis (PCoA) exhibited three main genetic groupings within studied fish group. The presented genetic characteristic of studied lamprey populations is important and necessary to develop and implement conservation actions of river lamprey in Poland
PL
Prezentowane badania dotyczą analizy genetycznej minoga rzecznego (Lampetra fluviatilis) z dwóch stanowisk w zlewni Wisły (z Wisły – okolice Czatkowy, woj. pomorskie oraz Zalewu Wi-ślanego). Analizę genetyczną prowadzono z zastosowaniem dziewięciu par starterów mikrosateli-tarnego DNA.Obserwowana heterozygotyczność (Ho) w badanych loci u minoga rzecznego z Wisły i Zale-wu Wiślanego przyjmowała odpowiednio wartości 0,158–0,974 i 0,040–0,900. Oczekiwana hetero-zygotyczność (He) u minoga rzecznego z Wisły i Zalewu Wiślanego wynosiła odpowiednio 0,177–0,673 oraz 0,213–0,670. Osiem loci mikrosatelitarnego DNA określono jako diagnostyczne z uwagi na fakt występowania w nich alleli prywatnych. Efektywna liczebność populacji (Ne) minoga rzecznego z Wisły i Zalewu Wiślanego przyjmowała wartości odpowiednio 72,4 (95% CI = 14,9–∞) oraz 25,8 (95% CI = 8,7–151,1). Drzewo pokrewieństw filogenetycznych, skonstru-owane na podstawie genetycznego dystansu DAS oraz analizy PCoA, wykazywało trzy podgrupy. Prezentowane wyniki badań stanowią wstępne informacje na temat zmienności genetycznej minoga rzecznego zasiedlającego Wisłę i Zalew Wiślany, które mogą być wykorzystane w ochronie tego gatunku. Uzyskane wyniki zostaną wykorzystane w trakcie opracowywania metod przecho-wywania i kriokonserwacji nasienia minoga rzecznego w celu utworzenia banku nasienia

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

1

Opis fizyczny

p.115-129,fig.,ref.

Twórcy

  • Department of Ichthyology, University of Warmia and Mazury, Oczapowskiego 5, 10-956 Olsztyn, Poland
autor
  • Department of Ichthyology, University of Warmia and Mazury, Olsztyn, Poland
autor
  • Department of Lake and River Fisheries, University of Warmia and Mazury, Olsztyn, Poland

Bibliografia

  • BRACKEN F.S.A., HOELZEL A.R., HUME J.B., LUCAS M.C. 2015. Contrasting population genetic structure among freshwater-resident and anadromous lampreys: the role of demographic history, differential dispersal and anthropogenic barriers to movement. Mol Ecol., 24: 1188–1204.
  • DEROSIER A.L., JONES M.L., SCRIBNER K.T. 2007. Dispersal of sea lamprey larvae during early life: relevance for recruitment dynamics. Environ. Biol. Fish., 78: 271–284.
  • DO C., WAPLES R.S., PEEL D., MACBETH G.M., TILLET B.J., OVENDEN J.R. 2013. NeEstimator V2: reimplementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Res., 14(1): 209–214.
  • EARL D.A., VON HOLDT B.M. 2011. Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour., 4: 359–361.
  • EVANNO G., REGNAUT S., GOUDET J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol., 14: 2611–2620.
  • EXCOFFIER L., LISCHER L. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 10: 564–567.
  • FINE J.M., VRIEZE L.A., SORENSEN P.W. 2004. Evidence that petromyzontid lampreys employ a common migratory pheromone that is partially comprised of bile acids. J. Chem. Ecol., 30: 2091–2110.
  • FOPP-BAYAT D. 2008. Inheritance of microsatellite loci in polyploid Siberian sturgeon (Acipenser baeri Brandt) based on uniparental haploids. Aquaculture Research, 39: 1787–1792.
  • FOPP-BAYAT D., CIERESZKO A. 2012. Microsatellite genotyping of cryopreserved spermatozoa for improvement of fish semen cryobanking. Cryobiology, 65: 196–201
  • FOPP-BAYAT D., WOZNICKI P. 2006. Verification of ploidy level in sturgeon larvae. Aquaculture Research, 37: 1671–1675.
  • FOPP-BAYAT D., KUZNIAR P., KOLMAN R., LISZEWSKI T., KUCINSKI M. 2015. Genetic analysis of six sterlet (Acipenser ruthenus Brandt) populations – recommendations for the plan of restitution in the Dniester River. Iran. J. Fish. Sci., 14(3) 634–645
  • FREYHOF J. 2013. Lampetra fluviatilis. The IUCN Red List of Threatened Species 2013: e.T11206A3263535, http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T11206A3263535.en, access: 2.11.2015.
  • GIGHER A., LAUNEY S., LASNE E., BESNARD A.L., EVANNO G. 2013. Characterization of thirteen microsatellite markers in river and brook lampreys (Lamptera fluviatilis and L. planeri). Con-serv. Genet. Resour., 5:141–143.
  • GOODMAN D.H., REID S.B., DOCKER M.F., HAAS G.R. 2008. Mitochondrial DNA evidence for high levels of geneflow among populations of a widely distributed anadromous lamprey Entosphe-nus tridentatus (Petromyzontidae). J. Fish. Biol., 72: 400–417.
  • GOUDET J. 2002. Fstat, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Updated from Goudet (1995), access: 30.01.2016.
  • HARDISTY M.W. 1986. Lampetra fluviatilis (Linnaeus, 1758). In: The freshwater fishes of Europe. Vol. 1. Ed. J. Holcı ́k. Wiesbaden, AULA-Verlag, pp. 249–278.
  • HOLLAND P.H.W., GARCIA-FERNANDEZ J., WILLIAMS N.A., SIDOW A. 1994. Gene duplication and the origins of vertebrate development. Development Suppl., pp. 125–133
  • KUCINSKI M., FOPP-BAYAT D., LISZEWSKI T., SVINGER V.W., LEBEDA I., KOLMAN R. 2015. Genetic analysis of four European huchen (Hucho hucho Linnaeus, 1758) broodstocks from Poland, Germany, Slovakia and Ukraine: implication for conservation. J. Appl. Genet., 56 (4): 469–480.
  • LANGELLA O. 2002. Populations 1.2.28. Logiciel de génétique des populations. Laboratoire Populations, génétique et évolution, CNRS UPR 9034, Gif-sur-Yvette, http://www.cnrs-gif.fr/pge/, access: 30.01.2016.
  • LELEK A. 1987. The freshwater fishes of Europe. Wiesbaden, AULA-Verlag, 9: 269.
  • LIU K., MUSE S.V. 2005. PowerMarker. Integrated analysis environment for genetic marker data.Bioinformatics, 21(9): 2128–2129.
  • LUZIER C.W., DOCKER M.F., WHITESEL T.A. 2010. Characterization of ten microsatellite loci for western brook lamprey Lamperta richardsoni. Conserv. Genet. Res., 2: 71–74.
  • MAITLAND P.S. 1980. Review of the ecology of lampreys in northern Europe. Can. J. Fish. Aquat. Sci., 37: 1944–1952.
  • MAITLAND P.S. 2003. Ecology of the River Brook and Sea Lamprey. Nature conserving Natura 2000. Rivers. Peterborough, pp. 52.
  • MATEUS C.S., RODRÍGUEZ-MUÑOZ R., QUINTELLA B.R., ALVES M.J., ALMEIDA P.R. 2012. Lampreys of the Iberian Peninsula. Distribution, population status and conservation. Endanger Species Res., 16: 183–198.
  • MATEUS C.S. 2013. Genetic and morphological diversity of the genus Lampetra (Petromyzontidae) in Europe. Dissertation, Instituto de Investigacao e Formacao Avancada, Portugal.
  • MATEUS C.S., ALMEIDA P.R., QUINTELLA B.R., ALVES M.J. 2011. MtDNA markers reveal the existence of allopatric evolutionary lineages in the threatened lampreys Lampetra fluviatilis (L.) and Lampetra planeri (Bloch) in the Iberian glacial refugium. Conserv. Genet., 12: 1061–1074.
  • MCFARLANE C.T., DOCKER M.F. 2009. Characterization of 14 microsatellite loci in the paired lamprey species Ichtyomyzon unicuspis and I. fossor and across amplification in four other Ichty-omyzon species. Conserv. Genet. Resour., 1: 377–380.
  • NEI M. 1972. Genetic distance between populations. Am. Nat., 106: 283–292.
  • NUNN A.D., HARVEY J.P., NOBLE R.A.A., COWX I.G. 2008. Condition assessment of lamprey poapulations in the Yorkshire Ouse catchment, north-east England, and the potential influence of physical migration barriers. Aquatic Conservation, 18: 175–189.
  • OJUTKANGAS E., ARONEN K., LAUKKANEN E. 1995. Distribution and abundance of river lamprey (Lampetra fluviatilis) ammocoetes in the regulated River Perhonkoki. Regulated Rivers. Research and Management, 10: 239–245.
  • PEAKALL R., SMOUSE P.E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28: 2537–2539.
  • PIRY S., LUIKARD G., CORNUET J.M. 1999. Bottleneck. A computer program for detecting recent reductions in effective population size from allele frequency data. J. Hered., 4: 502–503.
  • PRITCHARD J.K., STEPHENS M., DONNELLY P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959.
  • ROUSSET F. 2008. GenePop’007: a complete reimplementation of the GenePop software for Win-dows and Linux. Mol. Ecol. Res., 8(1): 103–106.
  • SCHEDINA I.M., PFAUTSCH S., HARTMANN S., DOLGENER N., POLGAR A., BIANCO P.G., TIEDE-MANN R., KETMAIER V. 2014. Isolation and characterization of eight microsatellite loci in the brook lamprey Lampetra planeri (Petromyzontiformes) using 454 sequence data. J. Fish. Biol., 85(3): 960–964.
  • SPICE E.K., WHITESEL T.A., MCFARLANE C.T., DOCKER M.F. 2011. Characterization of 12 microsa-tellite loci for the Pacific lamprey, Entosphenus tridentatus (Petromzyontidae), and cross-amplification in five other lamprey species. Genet. Mol. Res., 10(4): 3246–3250.
  • SPICE E.K., GOODMAN D.H., REID S.B., DOCKER M.F. 2012. Neither philopatric nor panmictic: microsatellite and mtDNA evidence suggests lack of natal homing but limits to dispersal in Pacific lamprey. Molecular Ecology, 21: 2916–2930.
  • TAYLOR E.B., HARRIS L.N., SPICE E.K., DOCKER M.F. 2012. Microsatellite DNA analysis of parapatric lamprey (Entosphenus spp.) populations: implications for evolution, taxonomy and conservation of a Canadian endemic. Can. J. Zool., 90: 291–303.
  • VAN OOSTERHOUT C., HUTCHINSON W.F., WILLS D.P.M., SHIPLEY P. 2004. Micro-Checker: software for identifying and correcting genotypes errors in microsatellite data. Mol. Ecol. Notes, 4(3): 535–538.
  • WALDMAN J., GRUNWALD C., WIRGIN I. 2008. Sea lamprey Petromyzon marinus: an exception to the rule of homing in anadromous fishes. Biol. Lett., 4: 659–662.
  • WALSH P.S., METZGER D.A., HIGUCHI R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10(4): 506–13.
  • WIESER T. 1992. Polish red book of animals, PWRiL, Warszawa.
  • YAMAZAKI Y., YOKOYAMA R., NAGAI T., GOTO A. 2011. Formation of a fluvial non-parasitic population of Lethenteron camtschaticum as the first step in petromyzontid speciation. J. Fish. Biol., 79: 2043–2059

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f18d9c7d-c176-4c8e-9199-35f3280b3bdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.