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Summary

Introduction: The main protease (Mpro) and the papain-like protease (PLpro) are essential for the replica-
tion of SARS-CoV-2. Both proteases can be targets for drugs acting against SARS-CoV-2. 
Objective: This paper aims to investigate the in silico activity of nine xanthophylls as inhibitors of Mpro and 
PLpro. 
Methods: The structures of Mpro (PDB-ID: 6LU7) and PLpro (PDB-ID: 6W9C) were obtained from RCSB 
Protein Data Bank and developed with BIOVIA Discovery Studio. Active sites of proteins were performed 
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using CASTp. For docking the PyRx was used. Pharmacokinetic parameters of ADMET were evaluated us-
ing SwissADME and pkCSM. 
Results: β-cryptoxanthin exhibited the highest binding energy: –7.4 kcal/mol in the active site of Mpro. In 
PLpro active site, the highest binding energy had canthaxanthin of –9.4 kcal/mol, astaxanthin –9.3 kcal/mol, 
flavoxanthin –9.2 kcal/mol and violaxanthin –9.2 kcal/mol. ADMET studies presented lower toxicity of 
xanthophylls in comparison to ritonavir and ivermectin. 
Conclusion: Our findings suggest that xanthophylls can be used as potential inhibitors against SARS-CoV-2 
main protease and papain-like protease. 
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INTRODUCTION

The SARS-CoV-2 is classified into the Betacoronavi-
ruses genus, in the Riboviria kingdom, Nidovirales 
order, Coronaviridae family and the Orthocorona-
virinae subfamily [1]. SARS-CoV-2 is a large, envel-
oped virus, which contains positive single-stranded, 
non-segmented RNA. It has four structural proteins: 
spike protein (S), nucleocapsid protein (N), mem-
brane glycoprotein (M), and envelope protein (E) [2]. 
In SARS-CoV-2 are two open reading frames: ORF1a 
and ORF1ab. ORFs encode polyproteins pp1a and 
pp1ab, which form the non-structural proteins (NSP 
1-16) [3]. NSPs are essential for viral replication. This 
process is facilitated by main protease (Mpro), also 
known as 3C-like protease (3CLpro), and the papain-
like protease (PLpro). Both proteases can be targets 
for anti-SARS-CoV-2 drugs [4]. Recent studies show 
that main protease can be inhibited by ritonavir and 
papain-like protease by ivermectin [5, 6]. 

The SARS-CoV-2 coronavirus is responsible 
for recent pandemics. The virus causes a  disease 
known as COVID-19. As of May 5, 2021, there were 
153 738 171 confirmed cases of COVID-19 world-
wide, including 3 217 281 deaths [7]. Vaccinations 
against SARS-CoV-2 infection were introduced 
very quickly [8] research on new ones is still being 
performed. However, there are no treatment guide-
lines for COVID-19. Various drugs are used with 
varying degrees of success. So far, remdesivir is the 
only drug approved by the Food and Drug Admin-
istration (FDA) to treat COVID-19 [9].

Xanthophylls are a group of pigments belonging 
to carotenoids found in plants and algae. The more 
common ones are fucoxanthin, astaxanthin, violax-
anthin, zeaxanthin, and lutein [10]. Xanthophylls 
have multi-focal activity. Among others, their anti-
bacterial [11], antibiofilm [12], antioxidant [13, 14], 

anti-inflammatory [13, 15] and anticancer [16] ac-
tivities have been described. The latest publications 
indicate that xanthophylls may also have a protective 
effect in the course of COVID-19 [17, 18]. However, 
their mechanism of action against SARS-CoV-2 is 
not known. 

One of methods of drug discovery is in silico 
research, namely computer-aided drug design 
(CADD). CADD is a cost-effective and fast tool, as 
compared to traditional methods. It allows the pre-
diction of protein structure and function, identifica-
tion of small molecule (ligand) interactions, active 
site residues and the study of protein-ligand inter-
actions. Designing and binding ligands to a protein 
(target) is referred to as docking. Docking identifies 
specific hit molecules from among multiple ligands 
[19, 20]. In silico studies also determine the safety 
of a potential drug by prediction of the absorption, 
distribution, metabolism, excretion, and toxicity 
(ADMET) profiles [21].

This paper aims to investigate the in silico activ-
ity of selected xanthophylls as inhibitors of the main 
protease (Mpro) and the papain-like protease (PL-
pro) of SARS-CoV-2.

MATERIALS AND METHODS

Preparation of ligands and receptor

The 3D SDF structures of nine xanthophylls (asta-
xanthin, canthaxanthin, β-cryptoxanthin, flavo- 
xanthin, fucoxanthin, lutein, neoxanthin, violax-
anthin, and zeaxanthin) was downloaded from the 
PubChem database (fig. 1). Ritonavir and ivermec-
tin were used as control compounds. Using the 
PyRx 0.8 [23] compounds, energy was minimized 
and files were converted to the PDBQT format for 
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docking. The structures of the SARS-CoV-2 main 
protease (PDB-ID: 6LU7 at a resolution of 2.16 Å) 
and the papain-like protease (PDB-ID: 6W9C at 
a  resolution of 2.70 Å) were obtained from RCSB 
Protein Data Bank [24]. The hetero-atoms, water, 
and ligand groups were removed from the struc-
tures using BIOVIA Discovery Studio DS2021 [25]. 

Docking

Active sites of proteins were performed using the 
Computed Atlas of Surface Topography of proteins 
(CASTp) [26]. The active site of 6LU7 was in chain 
A and the active site of 6W9C was between A, B and 
C chains. 

Figure 1. 
Chemical structures of the selected molecules for computational studies

β-cryptoxanthin No 2.333 0.517 No No 

flavoxanthin No 2.218 2.225 No No 

fucoxanthin No 2.428 1.146 No No 

lutein No 3.491 2.572 No No 

neoxanthin No 2.350 2.077 No No 

violaxanthin No 2.132 2.054 No No 

zeaxanthin No 3.496 2.603 No No 

ritonavir No 2.703 2.231 Yes No 

ivermectin No 3.013 1.883 Yes No 
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For docking, the Autodock Vina tool was used 
compiled in the PyRx 0.8 [23]. The grid boxes had 
the following values: for 6LU7 dimensions x, y, 
z: 25.7459 Å, 29.2824 Å, 30.5270 Å, centre x, y, z: 
-11.1833 Å, 14.7388 Å, 68.9308 Å, and for 6W9C di-
mensions x, y, z: 86.9085 Å, 88.8525 Å, 95.9205 Å, 
centre x, y, z: -36.8549 Å, 11.6758 Å, 38.9205 Å.

In silico drug-likeness and ADMET prediction

Drug-likeness properties were calculated using Li-
pinski’s rule of five [27]. According to this rule, the 
orally active substance should have no more than 
one violation of the following criteria: 
•	 no more than 5 H bond donors (OH, NH, and 

SH); 
•	 no more than 10 H bond acceptors (N, O, and S 

atoms); 
•	 molecular weight less than 500 Da; 
•	 octanol-water partition coefficient (log P) lower 

than 5. 
Pharmacokinetic parameters of absorption, dis-

tribution, metabolism, excretion, and toxicity (AD-
MET) were evaluated using SwissADME [29].

Ethical approval: The conducted research is not re-
lated to either human or animal use.

RESULTS AND DISCUSSION

In silico studies allow for fast prediction of activity and 
toxicity of natural compounds. SARS-CoV-2 compu-
tational analyses are important in searching for ac-

tive drugs or designing vaccines [30–34]. The main 
protease (Mpro) and the papain-like protease (PL-
pro) can be targets for anti-SARS-CoV-2 drugs. Re-
search in this direction is prevalent and concerns 
mainly common natural compounds or repurposing 
of already used drugs [35–38]. Studies presented in 
this article are first concerning the activity of xantho-
phylls against SARS-CoV-2.

Results indicate that some xanthophylls exhib-
ited binding energies similar to control drugs. In the 
case of the main protease, the binding energy of ri-
tonavir was –7.7 kcal/mol, whereas β-cryptoxanthin 
was –7.4 kcal/mol. In papain-like protease, the bind-
ing energy of ivermectin was –9.5 kcal/mol, whereas 
for canthaxanthin was –9.4 kcal/mol, for astaxan-
thin –9.3 kcal/mol, and for both flavoxanthin and 
violaxanthin was –9.2 kcal/mol (tab. 1). Amino acid 
residues involved in interactions between viral pro-
teases and leads with the best binding energies are 
presented in figures 2–7.

It was found that all the tested xanthophylls violat-
ed two rules of Lipinski, namely molecular weight and 
Log P. This means that all compounds are poorly solu-
ble in water and have low gastrointestinal absorption. 
Therefore, it would be necessary to create, for exam-
ple, nanoparticles to increase the availability of xan-
thophylls. Ritonavir and ivermectin, used as controls, 
also have two violations of Lipinski’s rules (tab. 2). 

All the tested xanthophylls do not demonstrate 
AMES toxicity, hepatotoxicity and skin sensitiza-
tion. Xanthophylls have oral rat acute and chronic 
toxicity similar to these of control drugs. What is in-
teresting, ritonavir and ivermectin show hepatotox-
icity. It means that xanthophylls are less toxic than 
these two FDA-accepted drugs (tab. 3).

Table 1. 
Free binding energies of the selected xanthophylls and control compounds against SARS-CoV-2

Compound PubChem ID
Main protease (6LU7) Papain-like protease (6W9C)

Binding energy [kcal/mol]

Astaxanthin 5281224 –6.1 –9.3
Canthaxanthin 5281227 –6.1 –9.4
β-Cryptoxanthin 5281235 –7.4 –8.8
Flavoxanthin 5281238 –6.6 –9.2
Fucoxanthin 5281239 –6.3 –8.3
Lutein 5281243 –6.2 –9.0
Neoxanthin 5281247 –6.9 –8.8
Violaxanthin 448438 –6.5 –9.2
Zeaxanthin 5280899 –6.4 –8.2
Ritonavir 392622 –7.7 (control) –8.7
Ivermectin 6321424 –8.1 –9.5 (control)
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Figure 2. 
Interactions of β-cryptoxanthin docked into the 

main protease

Figure 3. 
Canthaxanthin docked into the active site of the 

papain-like protease
 

Figure 4.
Interactions of canthaxanthin docked into papa-

in-like protease

Figure 5. 
Interactions of astaxanthin docked into papain-

like protease

Figure 6. 
Interactions of flavoxanthin docked into papain-

like protease

Figure 7. 
Interactions of violaxanthin docked into papain-

like protease
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Table 2. 
Physicochemical properties of the tested xanthophylls

Compound
Lipinski’s rule of five

Molecular weight (Da) Partition coefficient 
(Log P)

Hydrogen bond 
donors (HBD)

Hydrogen bond 
acceptors (HBA)

Astaxanthin 596.84 8.24 2 4

Canthaxanthin 564.84 9.64 0 2

β-Cryptoxanthin 552.87 10.20 1 1

Flavoxanthin 584.87 8.50 2 3

Fucoxanthin 658.91 7.72 2 6

Lutein 568.87 9.21 2 2

Neoxanthin 600.87 7.88 3 4

Violaxanthin 600.87 8.39 2 4

Zeaxanthin 568.87 9.31 2 2

Ritonavir 720.94 5.04 4 7

Ivermectin 875.09 4.35 3 14

Table 3. 
Predicted toxicity of the tested xanthophylls

Name AMES toxicity Oral rat acute tox. 
LD50

Oral rat chronic 
tox. LOAEL Hepatotoxicity Skin sensitization

Astaxanthin No 3.515 2.173 No No
Canthaxanthin No 2.188 2.568 No No
β-Cryptoxanthin No 2.333 0.517 No No
Flavoxanthin No 2.218 2.225 No No
Fucoxanthin No 2.428 1.146 No No
Lutein No 3.491 2.572 No No
Neoxanthin No 2.350 2.077 No No
Violaxanthin No 2.132 2.054 No No
Zeaxanthin No 3.496 2.603 No No
Ritonavir no 2.703 2.231 Yes No
Ivermectin no 3.013 1.883 Yes No

CONCLUSIONS

Some xanthophylls exhibited binding energies 
similar to drugs used in the treatment of SARS-
CoV-2 infection. We identified β-cryptoxanthin as 
a potent inhibitor of SARS-CoV-2 main protease, 
and simultaneously canthaxanthin, astaxanthin, 
flavoxanthin and violaxanthin as inhibitors of pa-
pain-like protease. ADMET studies presented that 
xanthophylls have lower toxicity than ritonavir 
and ivermectin. Our findings suggest that xantho-
phylls can be used as potential inhibitors against 
SARS-CoV-2 main protease and papain-like pro-
tease.

Conflict of interest: Authors declare no conflict of 
interest.
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