PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |

Tytuł artykułu

Composition and distribution of organic carbon in river sediments: a case study of two northern Chinese rivers

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In order to explore the composition characteristics and distribution pattern of organic carbon (OC) in river sediments, river sediments and riverbank soils were sampled from upstream to downstream of the Majia and Tuhai rivers in northern China, and then determined for heavy fraction organic carbon (HFOC) and light fraction organic carbon (LFOC). Results showed that the HFOC had a significant correlation with LFOC in Majia riverbank sediments or soils, indicating that HFOC and LFOC might have homology and that the Majia River is relatively stable. The distribution pattern of OC is changing irregularly along with rivers. Mean HFOCs in sediments were slightly higher than that in riverbank soils in both studied rivers. Contributions of some other sources of OC that accumulated in sediments might result in better capacity of sediments to OC than soils of riverbank. Our study demonstrated that sediments could accumulate HFOC and LFOC derived from many sources, and had a better capability for the storage of OC, irrespective of HFOC and LFOC.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

3

Opis fizyczny

p.969-975,fig.,ref.

Twórcy

autor
  • Institute of Environmental Research, Shandong University, Jinan 250100, China
autor
  • Institute of Environmental Research, Shandong University, Jinan 250100, China
  • School of Life Science, Shandong University, Jinan 250100, China
autor
  • Institute of Environmental Research, Shandong University, Jinan 250100, China

Bibliografia

  • 1. MYHRVOLD N.P., CALDEIRA K. Greenhouse gases, climate change and the transition from coal to low-carbon electricity. Environ. Res. Lett. 7, 014019, 2012.
  • 2. KUROKAWA J., OHARA T., MORIKAWA T., HANAYAMA S., JANSSENS-MAENHOUT G., FUKUI T., KAWASHIMA K., AKIMOTO H. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2. Atmos. Chem. Phys. 13, 11019, 2013.
  • 3. LAL R. Carbon sequestration. Philos. T. R. Soc. B-Biol.Sci. 363, 815, 2008.
  • 4. LAL R. Soil carbon sequestration impacts on global climate change and food security. Science. 304, 1623, 2004.
  • 5. LAL R. Soil carbon sequestration to mitigate climate change. Geoderma. 123, 1, 2004.
  • 6. WANG S.Q., ZHOU C.H., LI K.R., ZHU S.L., HUANG F.H. China soil organic carbon pool and its spatial distribution characteristics analysis. Ac. Geogr. Sinica. 55, 533, 2000.
  • 7. EULISS JR N.H., GLEASON R.A., OLNESS A., MCDOUGAL R.L., MURKIN H.R., ROBARTS R.D., BOURBONNIERE R.A., WARNER B.G. North American prairie wetlands are important nonforested land-based carbon storage sites. Sci.Total Environ. 361, 179, 2006.
  • 8. MITSCH W.J., NAHLIK A., WOLSKI P., BERNAL B., ZHANG L., RAMBERG L. Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetlands Ecol. Manage. 18, 573, 2010.
  • 9. AUSTIN A.T., VIVANCO L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature. 442, 555, 2006.
  • 10. PRESCOTT C.E. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry. 101, 133, 2010.
  • 11. DENEF K., DOTARELI L., BODDEY R.M., SIX J. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols. Soil Biol. Biochem. 39, 1165, 2007.
  • 12. ZHANG W.J., PENG P.Q., TONG C.L., WANG X.L., WU J.S. The composition characteristics and vertical distribution of organic carbon in Dongting Lake wetland. Environ. Sci. 26, 56, 2005.
  • 13. BASILE-DOELSCH I., AMUNDSON R., STONE W.E.E., BORSCHNECK D., BOTTERO J.Y., MOUSTIER S., MASIN S., COLIN F. Mineral control of carbon pools in a volcanic soil horizon. Geoderma. 137, 477, 2007.
  • 14. GONG W., YAN, X.Y., WANG J.Y., HU T.X., GONG Y.B. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China. Geoderma. 149, 318, 2009.
  • 15. RICHARDS A.E., DALAL R.C., SCHMIDT S. Soil carbon turnover and sequestration in native subtropical tree plantations. Soil Biol. Biochem. 39, 2078, 2007.
  • 16. BOONE R.D. Light-fraction soil organic matter: origin and contribution to net nitrogen mineralization. Soil Biol. Biochem. 26, 1459, 1994.
  • 17. TAN Z., LAL R., OWENS L., IZAURRALDE R.C. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil Till. Res. 92, 53, 2007.
  • 18. LIU L., XU M., LIN M., ZHANG X. Spatial Variability of Greenhouse Gas Effluxes and Their Controlling Factors in the Poyang Lake in China. Pol. J. Environ. Stud., 22, 749, 2013.
  • 19. HU J., PENG P., JIA G., MAI B., ZHANG G. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China. Mar. Chem. 98, 274, 2006.
  • 20. YANG L., LI G. The research progress of soil inorganic carbon. Chinese J. Soil Sci. 42, 986, 2011.
  • 21. Liu X., Li F.M., Liu D.Q., Sun G.L. Soil organic carbon, carbon fractions and nutrients as affected by land use in semiarid region of Loess Plateau of China. Pedosphere. 20, 46, 2010.
  • 22. WANG J.Y., ZHAO H., HU G.F. Temporal and spatial dynamic change characteristics of non-frost period based on GIS in Shandong Province. Chin. Agric. Sci. Bull. 27, 301, 2011.
  • 23. SZAFRANEK-NAKONIECZNA A., BENNICELLI R.P. Ability of peat soil to oxidize methane and effect of temperature and layer deposition. Pol. J. Environ. Stud. 19, 805, 2010.
  • 24. LIU M.Y., CHANG Q.R., QI Y.B., LIU J., CHEN T. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China. Catena. 115, 19, 2014.
  • 25. TAYLOR P.G., TOWNSEND A.R. Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature. 464, 1178, 2010.
  • 26. ZHANG S., LU, X.X., SUN, H., HAN, J., HIGGITT D.L. Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China. Sci. Total Environ. 407, 815, 2009.
  • 27. BRIDGE J.S. Rivers and Floodplains: Forms, Processes, and Sedimentary Record. Wiley-Blackwell Publishing Ltd., Oxford, UK. 2009.
  • 28. ONI S.K., FUTTER M.N., BISHOP K., KOHLER S.J., OTTOSSON-LOFVENIUS M., LAUDON H. Long term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity. Biogeoscie. Discuss. 9, 19121, 2012.
  • 29. COUTURE S., HOULE D., GAGNON C. Increases of dissolved organic carbon in temperate and boreal lakes in Quebec, Canada. Environ. Sci. Pollut. R. 19, 361, 2012.
  • 30. DENEF K., DOTARELI L., BODDEY R.M. SIX J. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols. Soil Biol. Biochem. 39, 1165, 2007.
  • 31. LANDA M., COTTRELL M.T., KIRCHMAN D.L., BLAIN S., OBERNOSTERER I. Changes in bacterial diversity in response to dissolved organic matter supply in a continuous culture experiment. Aquat. Microb. Ecol. 69, 157, 2013.
  • 32. SCHULYZ P., URBAN N.R. Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments: A modeling study. Ecol. Model. 210, 1, 2008.
  • 33. KIM J.H., ZELL C., MOREIRA-TURCQ P., PEREZ M.A., ABRIL G., MORTILLARO J.M., JOHAN W.H.W., TARIK M., SINNINGHE DAMATE J.S. Tracing soil organic carbon in the lower Amazon River and its tributaries using GDGT distributions and bulk organic matter properties. Geochim. Cosmochim. Ac. 90, 163, 2012.
  • 34. MARIN-SPIOTTA E.R.I.K.A., SILVER W.L., SWANSTON C.W., OSTERTAG R. Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Global Change Biol. 15, 1584, 2009.
  • 35. PRESCOTT C.E. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry. 101, 133, 2010.
  • 36. ZHANG W.J., PENG P.Q., TONG C.L., WANG X.L., WU J.S. The composition characteristics and vertical distribution of organic carbon in Dongting Lake wetland. Environ. Sci. 26, 56, 2005.
  • 37. POWELL K.M. Quantifying soil organic carbon (SOC) in wetlands impacted by groundwater withdrawals in westcentral Florida. University of South Florida. Tampa, State of Florida, USA. 2008.
  • 38. PRAHL F.G, ERTEL J.R., GONI M.A., SPARROW M.A., EVERSMEYER B. Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim. Cosmochim. Ac. 58, 3035, 1994.
  • 39. CONG W.F., HOFFLAND E., LI L., SIX J., SUN J.H., BAO X.G., ZHANG F.S. Intercropping enhances soil carbon and nitrogen. Global Change Biol. In press. 2014 (DOI: 10.1111/gcb.12738).
  • 40. MILLER A.J., AMUNDSON R., BURKE I.C., YONKER C. The effect of climate and cultivation on soil organic C and N. Biogeochemistry. 67, 57, 2004.
  • 41. JANSSENS I.A., DIELEMAN W., LUYSSAERT S., SUBKE J.A., REICHSTEIN M., CEULEMANSR., CIAIS P., DOLMAN A.J., GRACE J., MATTEUCCI G., PAPALE D., PIAO S.L., SCHULZE E-D., TANG J., LAW B.E. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ed933feb-3e23-4772-aa75-dd263fce0d2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.