PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 06 |

Tytuł artykułu

5-Aminolevulinic acid (ALA) promotes primary root elongation through modulation of auxin transport in Arabidopsis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The specific function of 5-aminolevulinic acid (ALA), a new plant growth regulator, in modulating root growth of plants and the mechanisms underlying ALA-regulated root growth are largely unknown. Here, Arabidopsis seedlings were photographed and collected before and after ALA or 2,3,5-triiodobenzoic acid (TIBA) treatment for determination of root growth, fluorescence intensities of PIN1, PIN2, PIN7, and DR5, and gene expression levels of auxin synthesis, signaling, and transport. We first demonstrated that ALA significantly promoted Arabidopsis primary root elongation. We also found that TIBA, an auxin polar transport inhibitor, inhibited ALA-promoted root elongation, indicating that auxin transport is involved in ALA-regulated root growth. Then, the observations of PIN1, PIN2, and PIN7 at protein and transcript levels suggest that ALA improves auxin transport mainly through regulating auxin efflux carriers. Furthermore, the expression patterns of auxin-responsive reporter DR5rev:GFP were not correlated well with the expression of YUC2, a key biosynthetic gene of auxin, but were consistent with changes of PIN1, PIN2, and PIN7. In addition, ALA did not affect the gene expression of auxin receptor, TRANSPORT-INHIBITOR-RESISTANT1 (TIR1). Taken together, we conclude that ALA promotes primary root elongation of young Arabidopsis seedlings mainly through improving auxin transport. Our data suggest the reciprocal interaction between ALA and auxin, providing new insights into the mechanisms underlying ALA-promoted plant root growth.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

06

Opis fizyczny

Article 85 [11p.], fig.,ref.

Twórcy

autor
  • College of Horticulture, Nanjing Agricultural University, Street Weigang 1, Nanjing 210095, China
autor
  • College of Horticulture, Nanjing Agricultural University, Street Weigang 1, Nanjing 210095, China
autor
  • College of Horticulture, Nanjing Agricultural University, Street Weigang 1, Nanjing 210095, China
autor
  • Nanjing Institute of Agricultural Sciences, Nanjing 210046, China
autor
  • Nanjing Institute of Agricultural Sciences, Nanjing 210046, China
autor
  • College of Horticulture, Nanjing Agricultural University, Street Weigang 1, Nanjing 210095, China

Bibliografia

  • Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul 32:663–679. https://doi.org/10.1007/s00344-013-9325-9
  • Akram NA, Iqbal M, Muhammad A, Ashraf M, Al-Qurainy F, Shafiq S (2018) Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma 255:163–174. https://doi.org/10.1007/s00709-017-1140-x
  • Ali B, Huang CR, Qi ZY, Ali S, Daud MK, Geng XX, Liu HB, Zhou WJ (2013a) 5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape. Env Sci Pollut Res 20:7256–7267. https://doi.org/10.1007/s11356-013-1735-5
  • Ali B, Wang B, Ali S, Ghani MA, Hayat MT, Yang C, Xu L, Zhou WJ (2013b) 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul 32:604–614. https://doi.org/10.1007/s00344-013-9328-6
  • Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M, Zhou WJ (2014) Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crops Pro 52:617–626. https://doi.org/10.1016/j.indcrop.2013.11.033
  • An YY, Feng XX, Liu LB, Xiong LJ, Wang LJ (2016a) ALA-induced flavonols accumulation in guard cells is involved in scavenging H₂O₂ and inhibiting stomatal closure in Arabidopsis cotyledons. Front Plant Sci 7:1713. https://doi.org/10.3389/fpls.2016.01713
  • An YY, Li J, Duan CH, Liu LB, Sun YP, Cao RX, Wang LJ (2016b) 5-Aminolevulinic acid thins pear fruits by inhibiting pollen tube growth via Ca²⁺-ATPase-mediated Ca²⁺ efflux. Front Plant Sci 7:121. https://doi.org/10.3389/fpls.2016.00121
  • An YY, Liu LB, Chen LH, Wang LJ (2016c) ALA inhibits ABA-induced stomatal closure via reducing H₂O₂ and Ca²⁺ levels in guard cells. Front Plant Sci 7:482. https://doi.org/10.3389/fpls.2016.00482
  • An YY, Qi L, Wang LJ (2016d) ALA pretreatment improves waterlogging tolerance of fig plants. PLoS One 11:0147202. https://doi.org/10.1371/journal.pone.0147202
  • Band LR, Wells DM, Fozard JA, Ghetiu T, French AP, Pound MP, Wilson MH, Yu L, Li WD, Hijazi HI, Oh J, Pearce SP, Perez-Amador MA, Yun J, Kramer E, Alonso JM, Godin C, Vernoux T, Hodgman TC, Pridmore TP, Swarup R, King JR, Bennett MJ (2014) Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell 26:862–875. https://doi.org/10.1105/tpc.113.119495
  • Bindu RC, Vivekanandan M (1998) Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation. Plant Growth Regul 26:15–18. https://doi.org/10.1023/A:1006098005335
  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44. https://doi.org/10.1038/nature03184
  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445. https://doi.org/10.1038/nature03543
  • Enders TA, Oh S, Yang Z, Montgomery BL, Strader LC (2015) Genome sequencing of Arabidopsis abp1-5 reveals second-site mutations that may affect phenotypes. Plant Cell 27:1820–1826. https://doi.org/10.1105/tpc.15.00214
  • Feng XX, An YY, Zheng J, Sun M, Wang LJ (2016) Proteomics and SSH analyses of ALA-promoted fruit coloration and evidence for the involvement of a MADS-Box gene, MdMADS1. Front Plant Sci 7:1615. https://doi.org/10.3389/fpls.2016.01615
  • Fu JJ, Chu XT, Sun YF, Xu YF, Hu TM (2016) Involvement of nitric oxide in 5-aminolevulinic acid-induced antioxidant defense in roots of Elymus nutans exposed to cold stress. Biol Plant 60:585–594. https://doi.org/10.1007/s10535-016-0635-1
  • Ganguly A, Lee SH, Cho M, Lee OR, Yoo H, Cho HT (2010) Differential auxin-transporting activities of PIN-FORMED proteins in Arabidopsis root hair cells. Plant Physiol 153:1046–1061. https://doi.org/10.1104/pp.110.156505
  • Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112:2275–2280. https://doi.org/10.1073/pnas.1500365112
  • Grieneisen VA, Xu J, Maree AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013. https://doi.org/10.1038/nature06215
  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997) Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul 22:109–114. https://doi.org/10.1023/a:1005883930727
  • Koprivova A, Mugford ST, Kopriva S (2010) Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Rep 29:1157–1167. https://doi.org/10.1007/s00299-010-0902-0
  • Kosar F, Akram NA, Ashraf M (2015) Exogenously-applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. S Afr J Bot 96:71–77. https://doi.org/10.1016/j.sajb.2014
  • Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138:3485–3495. https://doi.org/10.1242/dev.065102
  • Leyser O (1999) Plant hormones: ins and outs of auxin transport. Curr Biol 9:R8–R10. https://doi.org/10.1016/S0960-9822(99)80033-5
  • Li GJ, Zhu CH, Gan LJ, Ng D, Xia K (2015) GA₃ enhances root responsiveness to exogenous IAA by modulating auxin transport and signaling in Arabidopsis. Plant Cell Rep 34:483–494. https://doi.org/10.1007/s00299-014-1728-y
  • Liu LY, Nguyen NT, Ueda A, Saneoka H (2014) Effects of 5-aminolevulinic acid on Swiss chard (Beta vulgaris L. subsp cicla) seedling growth under saline conditions. Plant Growth Regul 74:219–228. https://doi.org/10.1007/s10725-014-9913-0
  • Liu D, Kong DD, Fu XK, Ali B, Xu L, Zhou WJ (2016) Influence of exogenous 5-aminolevulinic acid on chlorophyll synthesis and related gene expression in oilseed rape de-etiolated cotyledons under water-deficit stress. Photosynthetica 54:468–474. https://doi.org/10.1007/s11099-016-0197-7
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950. https://doi.org/10.1242/dev.086363
  • Mao JL, Miao ZQ, Wang Z, Yu LH, Cai XT, Xiang CB (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 Expression. PLoS Genet 12:e1006076. https://doi.org/10.1371/journal.pgen.1005760
  • Nunkaew T, Kantachote D, Kanzaki H, Nitoda T, Ritchie RJ (2014) Effects of 5-aminolevulinic acid (ALA)-containing supernatants from selected Rhodopseudomonas palustris strains on rice growth under NaCl stress, with mediating effects on chlorophyll, photosynthetic electron transport and antioxidative enzymes. Electron J Biotechn 17:19–26. https://doi.org/10.1016/j.ejbt.2013.12.004
  • Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918. https://doi.org/10.1126/science.1123542
  • Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212. https://doi.org/10.1105/tpc.107.052126
  • Ruzicka K, Simaskova M, Duclercq J, Petrasek J, Zazimalova E, Simon S, Friml J, Van Montagu MCE, Benkova E (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci USA 106:4284–4289. https://doi.org/10.1073/pnas.0900060106
  • Sassi M, Lu YF, Zhang YH, Wang J, Dhonukshe P, Blilou I, Dai MQ, Li J, Gong XM, Jaillais Y, Yu XH, Traas J, Ruberti I, Wang HY, Scheres B, Vernoux T, Xu J (2012) COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1-and PIN2-dependent auxin transport in Arabidopsis. Development 139:3402–3412. https://doi.org/10.1242/dev.078212
  • Scherer GFE (2011) AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction? J Exp Bot 62:3339–3357. https://doi.org/10.1093/jxb/err033
  • Slovak R, Ogura T, Satbhai SB, Ristova D, Busch W (2016) Genetic control of root growth: from genes to networks. Ann Bot 117:9–24. https://doi.org/10.1093/aob/mcv160
  • Su C, Liu L, Liu HP, Ferguson BJ, Zou YM, Zhao YK, Wang T, Wang YN, Li X (2016) H2O2 regulates root system architecture by modulating the polar transport and redistribution of auxin. J Plant Biol 59:260–270. https://doi.org/10.1007/s12374-016-0052-1
  • Sun HW, Tao JY, Liu SJ, Huang SJ, Chen S, Xie XN, Yoneyama K, Zhang YL, Xu GH (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746. https://doi.org/10.1093/jxb/eru029
  • Tsukagoshi H (2016) Control of root growth and development by reactive oxygen species. Curr Opin Plant Biol 29:57–63. https://doi.org/10.1016/j.pbi.2015.10.012
  • Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168. https://doi.org/10.1016/j.tplants.2007.03.006
  • Wang LJ, Jiang WB, Zhang Z, Yao QH, Matsui H, Ohara H (2003) Biosynthesis and physiological activities of 5-aminolevulinic acid (ALA) and its potential application in agriculture. Plant Physiol Commun 39:185–192. https://doi.org/10.13592/j.cnki.ppj.2003.03.001
  • Wang LJ, Jiang WB, Liu H, Liu WQ, Kang L, Hou XL (2005) Promotion by 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. J Integr Plant Biol 47:1084–1091. https://doi.org/10.1111/j.1744-7909.2005.00150.x
  • Wang QN, An B, Wei YX, Reiter RJ, Shi HT, Luo HL, He CZ (2016) Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis. Front Plant Sci 7:1882. https://doi.org/10.3389/fpls.2016.01882
  • Wei ZY, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9:86–100. https://doi.org/10.1016/j.molp.2015.12.003
  • Wei ZY, Zhang ZP, Lee MR, Sun YP, Wang LJ (2012) Effect of 5-aminolevulinic acid on leaf senescence and nitrogen metabolism of pakchoi under different nitrate levels. J Plant Nutr 35:49–63. https://doi.org/10.1080/01904167.2012.631666
  • Wu Y, Liao WB, Dawuda MM, Hu LL, Yu JH (2019) 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review. Plant Growth Regul 87:357–374. https://doi.org/10.1007/s10725-018-0463-8
  • Xu WF, Jia LG, Shi WM, Liang JS, Zhou F, Li QF, Zhang JH (2013) Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol 197:139–150. https://doi.org/10.1111/nph.12004
  • Zhao YY, Yan F, Hu LP, Zhou XT, Zou ZR, Cui LR (2015) Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress. Genet Mol Res 14:6401–6412. https://doi.org/10.4238/2015.June.11.16
  • Zhen A, Bie ZL, Huang Y, Liu ZX, Fan ML (2012) Effects of 5-aminolevulinic acid on the H₂O₂-content and antioxidative enzyme gene expression in NaCl-treated cucumber seedlings. Biol Plant 56:566–570. https://doi.org/10.1007/s10535-012-0118-y
  • Zheng XH, Miller ND, Lewis DR, Christians MJ, Lee KH, Muday GK, Spalding EP, Vierstra RD (2011) AUXIN UP-REGULATED F-BOX PROTEIN1 regulates the cross talk between auxin transport and cytokinin signaling during plant root growth. Plant Physiol 156:1878–1893. https://doi.org/10.1104/pp.111.179812

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ed361d14-c35f-462a-82e7-0c7448d5efbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.