PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |

Tytuł artykułu

Conversion of cropland to grassland and forest mitigates global warming potential in Northeast China

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In converting cropland to grassland and forest, more carbon is sequestered in grassland soil and forest biomass, but the mitigation of global warming potential (GWP) is not clear. In this study, we use the longterm conversion from cropland to grassland (28 y) and forest (14 y) to comprehensively assess the impact on GWP of soil carbon (C), nitrogen (N), CO₂, and N₂O emissions. The results showed that compared to the original cropland, conversion to grassland increased soil C content by 51.1%, soil N content by 28.4%, soil C stock (SCS) by four times, CO₂ emission by 17%, and N₂O emission by 40%; soil N stock (SNS) decreased by half. The corresponding values after afforestation were 7.2%, 5.2%, three times, 3%, -80%, and half, respectively. Overall GWP in the cropland system was calculated using the fuel used for farming production, the change in soil C, and N₂O emissions. Due to large C sequestration, the GWP of conversion to grassland (-1667 kg CO₂-C equivalent ha⁻¹·y⁻¹) and forest (-324 kg CO₂-C equivalent ha⁻¹·y⁻¹) were significantly lower than the cropland system (755 kg CO₂-C equivalent ha⁻¹·y⁻¹). The relationship between GWP and greenhouse gas, between GWP and the change of total C and N, suggest that in rain-fed agricultural systems in northeast China, the conversion from cropland to grassland and forest can mitigate GWP through changing CO₂ and N₂O emissions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

3

Opis fizyczny

p.1195-1203,fig.,ref.

Twórcy

autor
  • Nanjing University of Information Science and Technology, Nanjing 210044, China
autor
  • Nanjing University of Information Science and Technology, Nanjing 210044, China
autor
  • University of Chinese Academy of Sciences, Beijing 100000, China

Bibliografia

  • 1. BARRETT C.B. Measuring Food Insecurity. Science 327, 825, 2010.
  • 2. KIRSCHBAUM M.U.F., SAGGAR S., TATE K.R., GILTRAP D.L., AUSSEIL A.G.E. Comprehensive evaluation of the climate-change implications of shifting land use between forest and grassland: New Zealand as a case study. Agr. Ecosyst. Environ. 150, 123, 2012.
  • 3. SOLOMON S., QIN D., MANNING M., CHEN Z., MARQUIS M., AVERYT K.B., TIGNOR M., MILLER H. L. IPCC. Summary for policy makers. In: the TPSBCoWGIt, Climate FARotIPo, Change, editors. Climate Change ed. Cambridge University Press, Cambridge, United Kingdom and New York. pp. 1-18, 2007.
  • 4. JOBBÁGY E.G., JACKSON R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423, 2000.
  • 5. SHI S., ZHANG W., ZHANG P., YU Y., DING F. A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. Forest Ecol. Manag. 296, 53, 2013.
  • 6. MCKINLEY D.C., RYAN M.G., BIRDSEY R.A., GIARDINA C.P., HARMON M.E. A synthesis of current knowledge on forests and carbon storage in the United States. Ecol. Appl. 21, 1902, 2011.
  • 7. POST W.M., KWON K.C. Soil carbon sequestration and land-use change: processes and potential. Global Change Biol. 6, 317, 2000.
  • 8. GUO L.B., GIFFORD R.M. Soil carbon stocks and land use change: a meta analysis. Global Change Biol. 8, 345, 2002.
  • 9. VESTERDAL L., RITTER E., GUNDERSEN P. Change in soil organic carbon following afforestation of former arable land. Forest Ecol. Manag. 169, 137, 2002.
  • 10. ZHANG K., DANG H., TAN S., CHENG X., ZHANG Q. Change in soil organic carbon following the ‘Grain-for-Green’ programme in China. Land Degrad. Dev. 21, 13, 2010.
  • 11. SMITH P. Land use change and soil organic carbon dynamics. Nutr. Cycli. Agroecosystems. 81, 169, 2008.
  • 12. ARORA V.K., BOER G.J. Uncertainties in the 20th century carbon budget associated with land use change. Global Change Biol. 16, 3327, 2010.
  • 13. FORSTER P., RAMASWAMY V., ARTAXO P., BERNTSEN T., BETTS R. Changes in atmospheric constituents and in radiative forcing. Cambridge, United Kingdom: Cambridge University Press. pp. 129-234, 2007.
  • 14. SAGGAR S., TATE K.R., GILTRAP D.L., SINGH J. Soil-atmosphere exchange of nitrous oxide and methane in New Zealand terrestrial ecosystems and their mitigation options: a review. Plant Soil 309, 25, 2008.
  • 15. SMITH P., MARTINO D., CAI Z., GWARY D., JANZEN H. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B. 363, 789, 2008.
  • 16. SMITH P., MARTINO D., CAI Z.C., GWARY D., JANZEN H. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agr. Ecosyst. Environ. 118, 6, 2007.
  • 17. KELLIHER F.M., CLARK H., LI Z., NEWTON P.C.D., PARSONS A.J. A comment on scaling methane emissions from vegetation and grazing ruminants in New Zealand. Funct. Plant Biol. 33, 613, 2006.
  • 18. KIRSCHBAUM M.U.F., BRUHN D., ETHERIDGE D.M., EVANS J.R., FARQUHAR G.D. A comment on the quantitative significance of aerobic methane release by plants. Funct. Plant Biol. 33, 521, 2006.
  • 19. LAGANIERE J., ANGERS D.A., PARE D. Carbon accumulation in agricultural soils after afforestation: a metaanalysis. Global Change Biol. 16, 439, 2010.
  • 20. IPCC. Third Assessment Report. Climate Change 2001: Cambridge University Press, pp. 231, 2001.
  • 21. MEKI M.N., KEMANIAN A.R., POTTER S.R., BLUMENTHAL J.M., WILLIAMS J.R. Cropping system effects on sorghum grain yield, soil organic carbon, and global warming potential in central and south Texas. Agri. Systems 117, 19, 2013.
  • 22. PAUSTIAN K.E., ELLIOTT T., KILLIAN K., CIPRA J., BLUHM G. Modeling and regional assessment of soil carbon: a case study of the Conservation Reserve Program.; Lal R MK, editor. Madison, WI: SSSA Special Publ. pp. 315-318, 2001.
  • 23. FAO. Food and Agriculture Organization. Access at WWW. fao.org. 2010.
  • 24. WANG C.M., OUYANG H., SHAO B., TIAN Y.Q., ZHAO J.G. Soil Carbon Changes Following Afforestation with Olga Bay Larch (Larix olgensis Henry) in Northeastern China. J. Integr. Plant Biol. 48, 503, 2006.
  • 25. XING B.S., LIU X.B., LIU J.D., HAN X.Z. Physical and chemical characteristics of a typical Mollisol in China. Commun. Soil Sci. Plan. 35, 1829, 2004.
  • 26. WEST T.O., MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agr. Ecosyst. Environ. 91, 217, 2002.
  • 27. VERCHOT L., KRUG T., LASCO R.D., OGLE S., YUE L.Y. Chapter 6, Grassland, pp. 256, 2006.
  • 28. SHANG Z. H., CAO J. H., GUO R. Y., LONG R. J., DENG B. The response of soil organic carbon and nitrogen 10 years after returning cultivated alpine steppe to grassland by abandonment or reseeding. Catena. 119, 28, 2014.
  • 29. GEBHART D.L., JOHNSON H.B., MAYEUX H.S., POLLEY H.W. The CRP increases in soil organic carbon. J. Soil Water Conserv. 49, 488, 1994.
  • 30. WANG C.M. Impact of converting cropland to forest on the carbon balance and cost-benefit assessment. Beijing: Chinese Academy of Science, pp. 136-138, 2005.
  • 31. VАVГVА P., PENTTILЁ T., LAIHO R. Decomposition of Scots pine fine woody decris in boreal conditions: Implications for estimating carbon pools and fluxes. Forest Ecol. Manag.. 257, 401, 2009.
  • 32. ORAL H. V., GUNEY M., KUCUKER M. A., ONAY T. T., COPTY N. K., MATER B., YENIGUN O. The impact of hazelnuts in land-use changes on soil carbon and in situ soil respiration dynamics. J. Environ. Manag. 129, 341, 2013.
  • 33. BOUWMAN A.F., LEEMANS R. The role of forest soils in the global carbon cycle. Soil Science Society of America, Madison, WI. pp. 431, 1995.
  • 34. QIAO Y.F., MIAO S.J., HAN X.Z., YOU M.Y., ZHU X. The effect of fertilizer practices on N balance and global warming potential of maize-soybean-wheat rotations in Northeastern China. Field Crops Research, 161, 98, 2014.
  • 35. ULLAH S., FRASIER R., KING L., PICOTTE-ANDERSON N., MOORE T. R. Potential fluxes of N₂O and CH₄ from soils of three forest types in Eastern Canada. Soil Biol. Biochem. 40, 986, 2008.
  • 36. IMHOFF M.L., BOUNOUA L., RICKETTS T., LOUCKS C., HARRISS R. Global patterns in human consumption of net primary production. Nature 429, 870, 2004.
  • 37. SIX J., ELLIOTT E.T., PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099, 2000.
  • 38. CERLI C., CELI L., JOHANSSON M.B., KOGEL-KNABNER I., ROSENQVIST L. Soil organic matter changes in a spruce chronosequence on Swedish former agricultural soil I. Carbon and lignin dynamics. Soil Sci. 171, 837, 2006.
  • 39. DING W.X., WANG Y., WANG D. Emission of CO₂ and CH₄ from black soil in northeast china. J. Agro-Environ. Sci. 22, 720, 2003.
  • 40. THELEN K.D., FRONNING B.E., KRAVCHENKO A., MIN D.H., ROBERTSON G.P. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential. Biomass Bioenerg. 34, 960, 2010.
  • 41. FISHER M.J., RAO I.M., AYARZA M.A. Carbon storage by introduced deep-rooted grasses in South American savannas. Science 371, 236, 1994.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eca03185-38ba-4da9-850f-bb829dda1379
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.