PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 79 | 3 |

Tytuł artykułu

Contribution of glia cells specifically astrocytes in the pathology of depression: immunohistochemical study in different brain areas

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: The contribution of glial cells to the pathophysiology of depression is an emerging research purpose. This study investigated the deficits in glial cells, specifically astrocytes in various brain regions, after the development of depression and then after voluntary running in depressed rats. Materials and methods: Forty-five adult male Wistar rats aged 8–10 weeks were used in the study. A depression model was generated through a forced swimming programme; voluntary running was allowed on rat running wheels; and brain sections were taken from the hippocampus, dentate gyrus (DG), medial prefrontal cortex (mPFC) and cerebellar cortex. After immunostaining with specific antibodies immuno-stain, the astrocytes, oligodendroglia and microglial cells were counted, and certain indices relating astrocytes to other glial cells were calculated. Astrocytic morphology was studied, and the optical density (OD) of glial fibrillary acidic protein (GFAP) immuno-expression was measured in different groups. Results: Compared to the control group, animals in the depression group exhibited significant decreases in the mean astrocyte count in all studied brain areas, significant decreases in GFAP OD values in all areas and significantly reduced values for all glial astrocyte indices in the hippocampus, DG and mPFC. Compared to the rats in the depression group, those in the depression/exercise group exhibited significantly elevated mean astrocyte and oligodendroglia counts in all studied areas, significantly elevated GFAP OD values in all studied areas, and non-significant differences in glial astrocyte indices in the hippocampus, mPFC and cerebellar cortex. Conclusion: Astrocytes, rather than other glia, constitute a basis for the development and/or relief of depression. (Folia Morphol 2020; 79, 3: 419–428)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

79

Numer

3

Opis fizyczny

p.419-428,fig.,ref.

Twórcy

  • Department of Anatomy, Faculty of Medicine, Taibah University, Saudi Arabia
  • Department of Anatomy, Faculty of Medicine, Tanta University, Egypt
autor
  • International Academy of Education Science, Bogomolets National Medical University, Kyiv, Ukraine
autor
  • Department of Anatomy, Faculty of Medicine, Taibah University, Saudi Arabia
  • Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
autor
  • Department of Anatomy, Faculty of Medicine, Taibah University, Saudi Arabia
  • Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt
autor
  • Institute of Food Resources, Bogomolets National Medical University, Kyiv, Ukraine
  • Anatomy and Physiology Instructor, Academia Medical Institute, Columbus, Ohio, United States

Bibliografia

  • 1. Andrus BM, Blizinsky K, Vedell PT, et al. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol Psychiatry. 2012; 17(1): 49–61, doi: 10.1038/mp.2010.119, indexed in Pubmed: 21079605.
  • 2. Araya-Callís C, Hiemke C, Abumaria N, et al. Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology (Berl). 2012; 224(1): 209–222, doi: 10.1007/s00213-012-2741-x, indexed in Pubmed: 22610521.
  • 3. Ayuob N, Ali S, Suliaman M, et al. The antidepressant effect of musk in an animal model of depression: a histopathological study. Cell Tissue Res. 2016; 366(2): 271–284, doi: 10.1007/s00441-016-2468-9.
  • 4. Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron. 2008; 60(3): 430–440, doi: 10.1016/j.neuron.2008.10.013, indexed in Pubmed: 18995817.
  • 5. Bernardi C, Tramontina AC, Nardin P, et al. Treadmill exercise induces hippocampal astroglial alterations in rats. Neural Plast. 2013; 2013: 709732, doi: 10.1155/2013/709732, indexed in Pubmed: 23401802.
  • 6. Castrén E. Neurotrophins and psychiatric disorders. Handb Exp Pharmacol. 2014; 220: 461–479, doi: 10.1007/978-3-642-45106-5_17, indexed in Pubmed: 24668483.
  • 7. Constantinescu CS, Tani M, Ransohoff RM, et al. Astrocytes as antigen-presenting cells: expression of IL-12/IL-23. J Neurochem. 2005; 95(2): 331–340, doi: 10.1111/j.1471-4159.2005.03368.x, indexed in Pubmed: 16086689.
  • 8. Czéh B, Simon M, Schmelting B, et al. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology. 2006; 31(8): 1616–1626, doi: 10.1038/sj.npp.1300982, indexed in Pubmed: 16395301.
  • 9. Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012; 338(6103): 68–72, doi: 10.1126/science.1222939, indexed in Pubmed: 23042884.
  • 10. Ehninger D, Kempermann G. Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb Cortex. 2003; 13(8): 845–851, doi: 10.1093/cercor/13.8.845, indexed in Pubmed: 12853371.
  • 11. Eldomiaty MA, Almasry SM, Desouky MK, et al. Voluntary running improves depressive behaviours and the structure of the hippocampus in rats: A possible impact of myokines. Brain Res. 2017; 1657: 29–42, doi: 10.1016/j.brainres.2016.12.001, indexed in Pubmed: 27919728.
  • 12. Fatemi SH, Laurence JA, Araghi-Niknam M, et al. Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res. 2004; 69(2-3): 317–323, doi: 10.1016/j.schres.2003.08.014, indexed in Pubmed: 15469203.
  • 13. Garrett L, Lie DC, Hrabé de Angelis M, et al. Voluntary wheel running in mice increases the rate of neurogenesis without affecting anxiety-related behaviour in single tests. BMC Neurosci. 2012; 13: 61, doi: 10.1186/1471-2202-13-61, indexed in Pubmed: 22682077.
  • 14. Gittins RA, Harrison PJ. A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. J Affect Disord. 2011; 133(1-2): 328–332, doi: 10.1016/j.jad.2011.03.042, indexed in Pubmed: 21497910.
  • 15. Gosselin RD, Gibney S, O’Malley D, et al. Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience. 2009; 159(2): 915–925, doi: 10.1016/j.neuroscience.2008.10.018, indexed in Pubmed: 19000745.
  • 16. Grizzle WE. Special symposium: fixation and tissue processing models. Biotech Histochem. 2009; 84(5): 185–193, doi: 10.3109/10520290903039052, indexed in Pubmed: 19886755.
  • 17. Konarski JZ, McIntyre RS, Grupp LA, et al. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci. 2005; 30(3): 178–186, indexed in Pubmed: 15944742.
  • 18. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008; 455(7215): 894–902, doi: 10.1038/nature07455, indexed in Pubmed: 18923511.
  • 19. Lyck L, Dalmau I, Chemnitz J, et al. Immunohistochemical markers for quantitative studies of neurons and glia in human neocortex. J Histochem Cytochem. 2008; 56(3): 201–221, doi: 10.1369/jhc.7A7187.2007, indexed in Pubmed: 17998570.
  • 20. McKenzie IA, Ohayon D, Li H, et al. Motor skill learning requires active central myelination. Science. 2014; 346(6207): 318–322, doi: 10.1126/science.1254960, indexed in Pubmed: 25324381.
  • 21. Meyer RM, Burgos-Robles A, Liu E, et al. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear. Mol Psychiatry. 2014; 19(12): 1284–1294, doi: 10.1038/mp.2013.135, indexed in Pubmed: 24126924.
  • 22. Miguel-Hidalgo JJ, Baucom C, Dilley G, et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry. 2000; 48(8): 861–873, doi: 10.1016/s0006-3223(00)00999-9, indexed in Pubmed: 11063981.
  • 23. Miguel-Hidalgo JJ, Whittom A, Villarreal A, et al. Apoptosis-related proteins and proliferation markers in the orbitofrontal cortex in major depressive disorder. J Affect Disord. 2014; 158: 62–70, doi: 10.1016/j.jad.2014.02.010, indexed in Pubmed: 24655767.
  • 24. Pariante CM. Depression, stress and the adrenal axis. J Neuroendocrinol. 2003; 15(8): 811–812, doi: 10.1046/j.1365-2826.2003.01058.x, indexed in Pubmed: 12834443.
  • 25. Pekny M, Pekna M, Messing A, et al. Astrocytes: a central element in neurological diseases. Acta Neuropathol. 2016; 131(3): 323–345, doi: 10.1007/s00401-015-1513-1, indexed in Pubmed: 26671410.
  • 26. Porsolt RD, Brossard G, Hautbois C, et al. Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci. 2001; Chapter 8: Unit 8.10A, doi: 10.1002/0471142301. ns0810as14, indexed in Pubmed: 18428536.
  • 27. Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets. 2013; 14(11): 1225–1236, doi: 10.2174/13894501113149990156, indexed in Pubmed: 23469922.
  • 28. Rial D, Lemos C, Pinheiro H, et al. Depression as a glial-based synaptic dysfunction. Front Cell Neurosci. 2015; 9: 521, doi: 10.3389/fncel.2015.00521, indexed in Pubmed: 26834566.
  • 29. Schafer DP, Lehrman EK, Stevens B. The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia. 2013; 61(1): 24–36, doi: 10.1002/glia.22389, indexed in Pubmed: 22829357.
  • 30. Stranahan AM, Khalil D, Gould E. Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus. 2007; 17(11): 1017–1022, doi: 10.1002/hipo.20348, indexed in Pubmed: 17636549.
  • 31. Torres-Platas SG, Nagy C, Wakid M, et al. Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides. Mol Psychiatry. 2016; 21(4): 509–515, doi: 10.1038/mp.2015.65, indexed in Pubmed: 26033239.
  • 32. Varghese F, Bukhari AB, Malhotra R, et al. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 2014; 9(5): e96801, doi: 10.1371/journal.pone.0096801, indexed in Pubmed: 24802416.
  • 33. Verkhratsky A, Steardo L, Parpura V, et al. Translational potential of astrocytes in brain disorders. Prog Neurobiol. 2016; 144: 188–205, doi: 10.1016/j.pneurobio.2015.09.003, indexed in Pubmed: 26386136.
  • 34. Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol. 2017; 27(5): 629–644, doi: 10.1111/bpa.12537, indexed in Pubmed: 28805002.
  • 35. Wake H, Moorhouse AJ, Nabekura J. Functions of microglia in the central nervous system--beyond the immune response. Neuron Glia Biol. 2011; 7(1): 47–53, doi: 10.1017/S1740925X12000063, indexed in Pubmed: 22613055.
  • 36. Webster MJ, Knable MB, Johnston-Wilson N, et al. Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav Immun. 2001; 15(4): 388–400, doi: 10.1006/brbi.2001.0646, indexed in Pubmed: 11782105.
  • 37. Zhan Y, Paolicelli RC, Sforazzini F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014; 17(3): 400–406, doi: 10.1038/nn.3641, indexed in Pubmed: 24487234.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ec7f5c25-91a1-41e1-b1c2-6912edf06593
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.