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Summary In the process of oil exploitation and transportation, large amounts of crude oil are
often spilled, resulting in serious pollution of the marine environment. Forecasting oil spill reverse
trajectories to determine the exact oil spill sources is crucial for taking proactive and effective
emergency measures. In this study, the backward-in-time model (BTM) is proposed for identifying
sources of oil spills in the East China Sea. The wind, current and random walk are three major factors
in the simulation of oil spill sources. The wind drag coefficient varies along with the uncertainty of
the wind field, and the random walk is sensitive to various traits of different regions, these factors
are taken as constants in most of the state-of-the-art studies. In this paper, a self-adaptive
modification mechanism for drift factors is proposed, which depends on a data set derived from
the drifter buoys deployed over the East China Sea shelf. It can be well adapted to the regional
characteristics of different sea areas. The correlation factor between predicted positions and actual
locations of the drifters is used to estimate optimal coefficients of the BTM. A comparison between
the BTM and the traditional method is also made in this study. The results presented in this paper
indicate that our method can be used to predict the actual specific spillage locations.
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1. Introduction

The East China Sea Shelf is adjacent to the South China Sea
and the Yellow Sea and is connected with the Japan Sea via
the Tsushima Strait (Takahashi and Morimoto, 2013), as shown
in Fig. 1. It is known that the East China Sea Shelf contains
large amounts of previously undiscovered oil over broad
continental areas. At present, there are five oil fields in
the East China Sea Shelf with the total area of
22,000 km2. The development of oil drilling and transporta-
tion has posed a potential threat to the East China Sea
ecological environment in case of oil spill. Due to long
weathering period of an oil spill and northerly winds that
prevail in winter in the region, the oil spill accidents are
likely to harm a variety of marine biological resources and
ecological environment (Liu et al., 2011), including the Zhou
Shan fishing ground. In the summer, driven by wind field and
Kuroshio, the oil spill can move across the East China Sea and
reach Kyushu and Ryukyuan islands, resulting in local ecolo-
gical damage (Andres et al., 2008; Guo et al., 2006; Ichikawa
et al., 2008; Lee et al., 2001). Hence, it is crucial to identify
possible oil spill sources and increase the emergency
response efficiency. Currently, initial forecast information
for oil spills derived from all kinds of numerical models is
provided to scientific research institutions, marine indus-
tries, government sectors, as well as to the public, which
helps increase the security and efficiency of marine naviga-
tion and increases the reasonable application of environ-
mental resources in coastal seas (Alves et al., 2014, 2016;
Cho et al., 2014; Lee et al., 2009; Park et al., 2009).

Simulating oil spill reverse trajectories can be dated back
to the twentieth century, a couple of backward-in-time
models have been presented by scientists from different
institutions. Galt and Payton initially proposed the 'receptor
Figure 1 The schematic ma
mode' option (Galt and Payton, 1983; Torgrimson, 1981),
using mean current and wind fields, which was then devel-
oped by the National Oceanic and Atmospheric Administra-
tion (NOAA). With the advent of more advanced technology,
the more accurate prediction can be achieved. Lagrangian
particle-tracking models (LPTMs) were developed and oper-
ated by the Oregon State University, in these models diffusive
processes were included because the particles are not strictly
passive (Batchelder, 2006). In addition, the two-way Lagran-
gian particle-tracking model (PTM) was proposed to identify
oil spill sources integrating with constant random walk pro-
cesses on the sea surface (Isobe et al., 2009). Ciappa and
Costabile suggested a new reverse method using a sequence
of current and wind data, which could be applied to several
receptor points simultaneously (Ciappa and Costabile, 2014).
Due to the wide application of backward-in-time methods,
the reverse method has also been demonstrated to be effec-
tive in predicting accidental marine pollution in the physics
of chaotic oil spill transport in the ocean (Prants, 2015).

However, recent Lagrangian backward-in-time models
include only advective movement process or advection com-
bined with simple directed diffusive movement process, and
regional characteristics are rarely considered (Adlandsvik
et al., 2004; Heath et al., 1998; Miller et al., 1998). In fact,
as an important factor, the wind has strong uncertainty in
different sea areas, to the extent that the wind drag coeffi-
cient cannot be simply defined based on an empirical value.
In addition, irreversible random walk processes, a variable
that contributes to oil spill movement, determined by the
wind direction, density of oil, temperature and salinity of the
water cannot be simply defined as a constant. In order to
improve the accuracy and reliability of the BTM numerical
method, both the optimal wind drag coefficient and random
walk should be parameterized based on the characteristic of
p of the East China Sea.



Table 1 The detailed information of drifters.

Institution Latitude Longitude Initial date Drifter numbers

DBCP (WMOa, ICOb) 238—338N 1188—1318E 2011.01—2011.11 14
AOMLc 238—338N 1188—1318E 2012.01—2012.11 5

a World Meteorological Organization.
b Intergovernmental Oceanographic Commission.
c Atlantic Oceanographic and Meteorological Laboratory.
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different regions. Usually, the real data concerning oil spills is
difficult to obtain, the oil spill trajectories are often pre-
dicted using drifter buoys (Abascal et al., 2009; AL-Rabeh
et al., 2000; Price et al., 2006). For example, in the past
decade, there have been many studies on trajectory model-
ing using drifters in different marine areas (Breivik and Allen,
2008; Breivik et al., 2011; Minguez et al., 2012; Ni et al.,
2010; Ullman et al., 2006). This current paper uses data
collected from a large number of drifters deployed in the East
China Sea and combined with high-resolution wind and cur-
rent data. Different time-period calibration coefficients are
calculated to reflect the actual marine environment, and a
parametric mechanism using drifter data in combination with
a regression algorithm is presented based on this.

The remainder of this paper is organized as follows: The oil
spill model used in this study and data-set are presented in
Section 2. Calibration of the wind field and the random walk
is described in Section 3. The results and validation of the
methodology and the importance of correction parameters
are discussed in Section 4. Finally, the summary of this paper
is described in Section 5.

2. Oil spill model and data

2.1. The oil spill reverse model

The numerical oil spill reverse model used in this paper was
developed on top of the regional oil spill model i4OilSpill (Yu
et al., 2016), which is devised to simulate oil spill trajec-
tories, weathering and fate processes using Eulerian-Lagran-
gian methodology. The i4OilSpill model implements a Client/
Server Structure (C/S) as the main architecture, which has
high computational efficiency and a user-friendly interface.
The initial oil spill positions, spill characteristics, bathymetry
of the spill region and ocean forcing are imported as initial
simulation elements. The i4OilSpill model is easy to be
exploited and deployed. It has been shown to be beneficial
with previous oil spill accidents.

2.2. Drifters

As previously mentioned, our data are collected from numer-
ous drifters. The drifters were deployed from January to
December 2011 via the Data Buoy Cooperation Panel (DBCP).
Due to insufficient data obtained in December, the calibra-
tion is only performed from January to November 2011. Most
of the drifters are deployed near the coast of the East China
Sea. The detailed information about these drifters is pre-
sented in Table 1, including a drifter number, the latitude and
longitude of the first record, the initial date and the institu-
tion. The trajectories of the drifters are illustrated in
Fig. 2. Drifters deployed in 2012 by the Atlantic Oceano-
graphic and Meteorological Laboratory (AOML) affiliated with
NOAA (National Oceanic and Atmospheric Administration) are
used to verify the results. All of the positions of the drifters
are tracked by the Argos system equipped in the NOAA
satellites, and the real-time positions of drifters are recorded
every six hours.

2.3. The oceanographic data

In the process of drifters' hindcasting, there are three major
effect factors: wind, current, and random walk. The effect
of wind field is about 60% on oil movement and fate process,
and it is used to calculate wave-induced stokes drift. The
velocity of oil particles by surface currents is about 25% on oil
spill hindcasting (El-Fadel et al., 2012; Liu et al., 2011).
Current data used in this study are calculated by the wave-
tide-circulation coupled model from MASNUM (Key Labora-
tory of Marine Science and Numerical Modeling), which is
developed based on POM and is able to forecast the current
field on a 1/248 by 1/248 grid every six hours. Meanwhile, the
air-ocean coupled model is integrated into the MASNUM,
which also can obtain the wind data with the horizontal
resolution of 1/248. The wave-induced mixing effects in the
upper ocean are also considered in the model (Qiao et al.,
2004). The velocity of oil particles due to random walk is
about 15% on the movement of oil in the area of the con-
tinental slope and shelf (Abascal et al., 2009; Liu et al.,
2011). The current and wind field are described intuitively in
the illustration shown in Fig. 3. The long-term sequential
meter-oceanographic data in high resolution, help to
improve the accuracy of results. The random walk, which
describes the uncertainty of the trajectory in the backward
mode caused by turbulent diffusion and the integration of
the main factors provide the probabilities of possible source
locations.

3. Method

In the drifters' reverse transportation, the motion is com-
puted by surface currents, wind and turbulent diffusion. The
process of reverse transportation comprises of an adjective
velocity and a diffusive velocity, the former is driven by the
currents and wind velocity, which are calculated as a linear
combination, the latter is dominated by the marine turbu-
lence characteristics, which are simulated as a Brownian
motion with parameterized random walk procedure. There-
fore, the velocity of drifter V

*
dr can be expressed as Eq. (1),

where a is the wind drag coefficient, b represents the specific
random walk, and V

*
W and V

*
C represent the wind and current

velocity, respectively.



Figure 2 The trajectories of drifters deployed in the East China Sea in 2011 (direction of drifters is from southwest to northeast).

Figure 3 The sample of the adopted scale of the wind (a) and the current (b) used in the experiment.
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V
*

dr ¼ aV
*

W þ V
*

C þ b (1)

The movement of drifters caused by the current field is
considered to be the same as the current velocity because
the drifters move with water particles. The direct effect of a
10 m wind on drifter movement can reach 2—4% (ASCE, 1996)
and the scope of deviation angle is about 0—258. In traditional
backward-in-time models, the wind drag coefficient usually
takes an empirical value of 3%. The diffusive motion of
drifters is computed using an empirical random walk (Abascal
et al., 2009). In the present study, a new method to calibrate
the correction factors is proposed. We used the regression
analysis to describe the temporal evolution of the impact
factors in the specific sea states. The simulation of the
impact factors is expressed as Eq. (2), where vdr vw and vc
represent the mean velocities of the sample data, where n is
the number of the sample data. Using a large amount of
drifter data, coefficients for the velocity of drifters are
performed.

a ¼
Xn
1

vwi�vwð Þ� vdr�vdrð Þ
vwi�vwð Þ2

b ¼ vdr�a�vw�vc

8<
: (2)

The displacement and previous positions of drifters are
shown in Eqs. (3) and (4), where Ddx(t�1) and Ddy(t�1) repre-
sent horizontal and vertical displacement per time step
respectively, px(t�1) and py(t�1) represent the latitude and
longitude of drifters in the previous time respectively, px(t)
and py(t) represent the initial positions of the drifters, respec-
tively, ax and ay are the wind drag coefficient components in
the x (W—E) and y (N—S) direction respectively, bx and by are
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Figure 4 The comparison of parameters in backward-in-time model (BTM) and traditional method. (For interpretation of the
references to color in the text, the reader is referred to the web version of this article.)

Table 2 The calibration coefficients and correlation factors for each month.

Month ax ay bx by R2
x R2

y R 2 R2
t

January 0.017 0.036 �0.017 �0.027 0.869 0.701 1.569 1.533
February 0.029 0.037 0.128 0.178 0.955 0.982 1.937 1.889
March 0.021 0.031 �0.064 0.104 0.469 0.865 1.334 0.970
April 0.015 0.035 �0.068 0.032 0.908 0.205 1.113 0.709
May 0.014 0.026 0.081 �0.014 0.889 0.806 1.696 1.454
June 0.017 0.026 �0.015 �0.012 0.566 0.635 1.201 0.956
July 0.013 0.042 �0.018 �0.013 0.624 0.797 1.422 0.973
August 0.021 0.022 �0.036 0.017 0.182 0.760 0.942 0.733
September 0.007 0.031 0.064 0.101 0.413 0.814 1.225 1.061
October 0.023 0.012 �0.060 0.024 0.452 0.530 0.982 1.053
November 0.029 0.027 0.072 0.032 0.435 0.318 0.953 0.780
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the diffusive velocities in the x and y direction respectively,
and dt represents the time step.

Ddxðt�1Þ ¼ ax�vwx�dt þ vcx�dt þ bx
Ddyðt�1Þ ¼ ay �vwy �dt þ vcy �dt þ by

�
(3)

pxðt�1Þ ¼ pxðtÞ�Ddxðt�1Þ
pyðt�1Þ ¼ pyðtÞ�Ddyðt�1Þ

�
(4)

The correlation factor between the backward-in-time
model and the real drifter positions are used to evaluate
Figure 5 Comparison between predicted drifter positions and actua
recorded in real-time; blue line represents drifter positions predicted
by traditional method). (For interpretation of the references to color
this article.)
the results. The objective parameter is defined in Eq. (5),
where pr and ps represent real drifter positions and simula-
tion positions, respectively, the correlation factor R2 is com-
posed of latitude correlation R2

x and longitude correlation R2
y,

which gives us an intuitive vision of the relationship between
actual locations and predicted results.

R2 ¼
Pn

1 pri�prð Þ� psi�psð Þ� �2
Pn

1 pri�prð Þ2�Pn
1ðpsi�psÞ2

(5)
l observed positions in 2012 (red line represents drifter positions
 by our method; green line represents drifter positions predicted

 in this figure legend, the reader is referred to the web version of



Figure 5. (Continued ).
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The aim of developing the aforementioned algorithm for
calibration is to find the combination of optimal parameters
to enable the prediction results to agree better with the
actual value. The improvement in identifying reverse tra-
jectories of drifters in the investigation areas makes it more
possible to determine the locations of an oil spill, the posi-
tions are taken as potential sites of spills in this paper.
4. Results and discussion

The applicability of the BTM in finding oil spill sources is
investigated using drifters. In the experiment, two typical
values (a and b) of calculated factors are used to predict the
results, using the same resolution of the wind and current
field. The correlation factors between the drifters and the
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reverse model are calculated and the associated components
are presented in Table 2. In the literature relating to this
topic, a varies from 0.007 to 0.042 of the wind speed, b has a
complex change in the range of the velocities of drifters. R2

t is
the correlation factor in the traditional method, in which the
wind drag coefficient and the random walk have been con-
sidered as a constant. In the oil spill model, R2 varies between
0.0 (no correlation) and 2.0 (perfect correlation). In general,
the correlation factor R2 has a value of higher than 1.2,
therefore, a good matching effect with the original positions
is found. The comparison between the parameters of BTM
and the traditional method are shown in Fig. 4.

From Table 2, we can see that the correlation factors of
the latter half are remarkably lower than those of the first
half. Due to the lack of drifters in the East China Sea, many
drifters located in the deep-water have been used, which are
likely to be influenced by the Kuroshio Current, thus leading
to increased velocities of the drifters. The Kuroshio Current
begins in the Philippine and crosses to the east of Taiwan
before flowing northeast. It is fast flowing, with the velocity
of about 3—10 km per hour, therefore, many simulated tra-
jectories of drifters are much slower than their actual velo-
cities.

The simulated trajectories move in the direction of the
current and wind. The red line in Fig. 4a reflects the constant
wind drag coefficient, which is the empirical value of 0.03,
the green and blue lines are the wind drag coefficients in a
latitude and longitude direction, respectively. Fig. 4a shows
that in most cases the wind drag coefficient in a latitude
direction is larger than that in a longitude direction. A north
monsoon is prevalent in the winter and a south monsoon is
prevalent in the summer, the drifters move faster in a
latitude direction compared to a longitude direction in rela-
tion to the monsoon. The value of the wind drag coefficients
is in a range of 0.02—0.04 around the empirical value of
0.03. The red and blue lines in Fig. 4b represent the random
walk in latitude and longitude directions, respectively, this is
affected by the wind and seasons, which cause complex
changes. The red line in Fig. 4c represents the correlation
coefficient for the BTM model and the blue line represents
the correlation coefficient for the traditional method. It is
evident that the correlation coefficient in the BTM method is
usually larger than its counterpart in the traditional method.

The simulation results of different wind drag coefficients
and specific random walk are compared in Fig. 5. The visua-
lization for February shows the maximum correlation
between the simulated result and real positions, where it
is obvious that the simulated trajectories perform well and
that the BTM method has clear advantages. However, the
visualization for April shows the minimum correlation
between the simulated result and real positions. From the
figure, it can be seen that in April the simulated values
deviate from the real velocity of the drifters, the drifters
are located in the deep-water areas and they may, therefore,
move slower due to the effect of the small-scale vortex and
other additional physical factors. Although the simulated
trajectories are not actually satisfactory, it is clear that
the BTM method gives better results than the traditional
method.

Based on these results, conclusions can be summarized as
follows. Firstly, the wind force in the area plays a primary
role in the process of oil spill movement and it has a
significant intraseasonal variance. Secondly, the irreversible
random-walk process makes the prediction of drifter loca-
tions closer to those of actual ones because of the spatio-
temporal variability of the ocean.

The efficiency of the BTM proposed in this study is demon-
strated by the results presented above. An oil spill is a sudden
and continuous accident, however, the worldwide risk ana-
lysis indicates a decreasing frequency while there is an
increasing trend in storage and pipeline oil spills (El-Fadel
et al., 2012). The presence of exploitative activities does not
necessarily imply the high probability of an oil spill events,
and it is not possible to accurately determine the source of
such a spill even when using advanced technology (Canu
et al., 2015). Once an oil spill occurs, it is important to
determine the source so the government agencies and insti-
tutions can swiftly and efficiently deal with it. Our data show
that the BTM method can effectively solve the problem and
predict potentially hazardous areas.

5. Conclusions

The Lagrange reverse model presented in this paper is based
on an automatic calibration algorithm, and the wind field and
random walk are used to improve the process. The recorded
location and time of each drifter provides critical information
used to identify correction coefficients. In this study, data
from drifters located in the East China Sea and calculated
calibration coefficients are representative values of the area
and are used for the backward-in-time method in the model.

In the computation of the algorithm, the wind drag coef-
ficient and random walk are considered to be linearly depen-
dent on wind speed. The high-resolution current and wind
field provided here serve as input data for the prediction
processes. Specific values of a and b are obtained for every
month within a complex marine environment. In the experi-
ment, the maximum correlation coefficient is 1.937, which
correlates fairly well with the real positions, and the mini-
mum correlation coefficient is 0.942, which also shows a
strong correlation. Using the BTM method, all the predicted
drifters have a better match than when using the traditional
method.

In summary, calibration of the drifters proves that the
optimal wind drag coefficients are not constant and that
random walk also changes with the variable ocean environ-
ments. The BTM can improve the capability of predicting
potential sources of oil spills in specific marine regions, and
the predicted results can play an important role in protecting
against oil spill marine pollution. In addition, this model can
be used by civil protection authorities, such as those deter-
mined in NEREIDs project of the European Commissions (Alves
et al., 2015).
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