B. A. PESKAR¹, W. CAWELLO², W. ROGATTI², G. RUDOFSKY³

ON THE METABOLISM OF PROSTAGLANDIN E₁ ADMINISTERED INTERAVENOUSLY TO HUMAN VOLUNTEERS

¹Department of Pharmacology and Toxicology, Ruhr-University of Bochum, D-4630 Bochum, ²Schwarz Pharma AG, D-4019 Monheim and ³Department of Internal Medicine, University of Essen, D-4300 Essen, Germany

We have demonstrated recently the formation of a biologically activemetabolite of prostaglandin (PG) E_1 , 13,14-dihydro-PGE₁, during intravenous infusions of PGE₁ in patients with peripheral arterial occlusive disease. We have now investigated the levels of the immediate precursor of 13,14dihydro-PGE₁, the biologically inactive 15-keto-13,14-dihydro-PGE₁, during intravenous administration of 20 μ g, 40 μ g or 80 μ g PGE₁ over a period of 60 min to human volunteers. It was found that levels of 15-keto-13,14dihydro-PGE₁, but not those of PGE₁ itself, increased in a dose-dependent manner. Thus, increased formation of 13,14-dihydro-PGE₁ from 15-keto-13,14-dihydro-PGE₁ with increasing doses of PGE₁ can be expected to occur. It remains to be investigated, to which extent formation of small amounts of 13,14-dihydro-PGE₁ during intravenous infusion of PGE₁ could contribute to the therapeutic effects of PGE₁ in patients with peripheral arterial' occlusive disease.

Key words: intravenous prostaglandin E_1 infusion — prostaglandin E_1 metabolism — 15-keto-13,14-dihydro-prostaglandin E_1 — 13,14-dihydro-prostaglandin E_1 — arterial occlusive disease

INTRODUCTION

It has been demonstrated repeatedly (1, 2) that not only intraarterial, but also intravenous infusion of PGE₁ is an effective treatment of peripheral arterial occlusive disease. The results with intravenous drug admimistration are surprising, since a major portion of circulating PGE₁ is rapidly metabolized during passage through the human lung (3). The initial metabolites formed, 15-keto-PGE₁ and 15-keto-13,14-dihydro-PGE₁. (KH₂PGE₂), have only negligible biological activity (4, 5). We have found recently (6), however, formation of 13,14-dihydro-PGE₁ (H₂PGE₁), a biologically active metabolite (4,5), during intravenous infusions of PGE₁. Since KH₂PGE₁ is the immediate precursor of H₂PGE₁, we have now investigated the dose-dependent formation of KH₂PGE₁ during intravenous infusions of PGE₁. Reasons has been desired a contract of the contract on the con

MATERIALS AND METHODS

PGE₁ (prostavasin^R, Schwarz Pharma AG, Monheim, Germany) was infused into the cubital vein of 12 healthy male volunteers (21—33 years of age) at doses of 20 μ g, 40 μ g or 80 μ g over a period of 60 min. Blood was taken from the contralateral cubital vein before and 5 and 30 min after the start of the infusions as well as at the end (60 min) and 5, 35 and 60 min after the end of the infusion periods. Blood was collected into syringes containing sodium-EDTA as anticoagulant and indomethacin as cyclooxygenase inhibitor (final concentrations 5.4 and 0.1 mM, respectively) and plasma was separated immediately. The unextracted plasma samples were analyzed for PGE₁ and KH₂PGE₁ radioimmunologically as described previously (7). KH₂PGE₁ was converted to a stable degradation product prior to assay (8). The antisera used recognize the monoenoic and dienoic compounds equally well. Thus, basal levels measured represent most probably the amounts of cross-reacting dienoic prostanoids, mainly PGE₂ and KH₂PGE₂, respectively, while increases during the infusions of PGE₁ should be due to PGE₁ and its circulating metabolite KH₂PHE₁, respectively.

The time course of plasma levels of PGE_1 and KH_2PGE_1 from 0 min to 120 min (60 min after the end of PGE_1 infusions) achieved with the 3 different doses of PGE_1 were evaluated by calculation of the "area under the curve" (AUC_{0-120}). The AUC_{0-130} values for PGE_1 and the metabolite KH_2PGE_1 were then related to the doses of PGE_1 administered by linear regression analysis.

RESULTS

As shown in Fig. 1 infusion of three different doses of PGE_1 did not result in dose-dependent increases in the venous plasma levels of PGE_1 . On the other hand, circulating levels of the major initial metabolite of PGE_1 , KH_2PGE_1 , increased clearly with the dose of PGE_1 administered (Fig. 2). Consequently, while for PGE_1 there was no obvious correlation (r = 0.6454) between the AUC_{0-120} values and the doses of PGE_1 infused (Fig. 3), a correlation coefficient of r = 0.9996 was observed for the metabolite (Fig. 4).

DISCUSSION

The present results show that venous plasma levels of KH_2PGE_1 , but not of PGE₁, correlate with the dose of PGE₁ administered. The data on PGE₁ may be due to rapid and variable metabolism during passage through the lungs (3), while the half-life of KH_2PGE_1 in the circulation is several minutes and thus considerably longer than that of PGE₁ (9, 10). Since KH_2PHE_1 is the immediate precursor of the biologically active H_2PHE_1 , continuous and dose-dependent formation of H_2PHE_1 during infusion of PGE₁ can be expected to occur. We have, in fact, observed formation of this metabolite in patients suffering from peripheral arterial occlusive

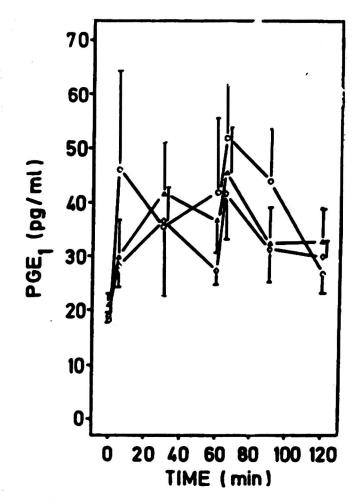


Fig. 1. Plasma levels of PGE₁ before, during and after a 60 min intravenous infusion of 20 μ g (\bigcirc), 40 μ g, (\diamondsuit) or 80 μ g (\triangle) PGE₁. Results represent means \pm S.E.M. of n = 12.

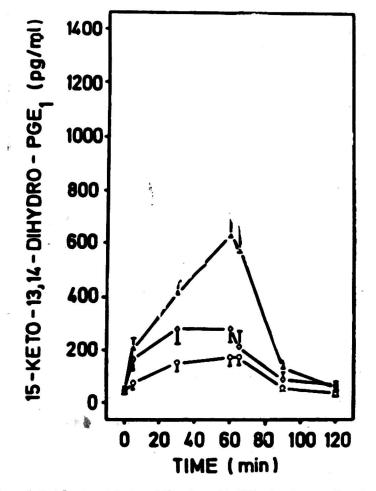


Fig. 2: Plasma levels of 15-keto-13,14-dihydro-PGE₁ before, during and after a 60 min intravenous infusion of 20 μ g (\odot), 40 μ g (\diamondsuit) or 80 μ g (\triangle) PGE₁. Results represent means \pm S.E.M. of n = 12.

6 - Journal of Physiol, and Pharmacology

329

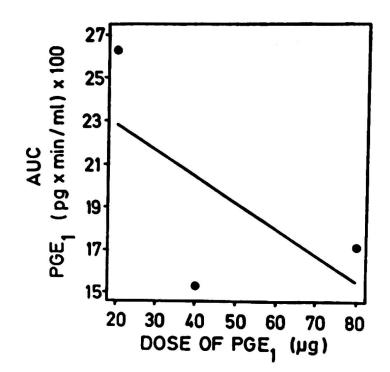


Fig. 3: Relationship between AUC_{0-120} for PGE₁ and dose of PGE₁ administered by intravenous infusion over a time period of 60 min.

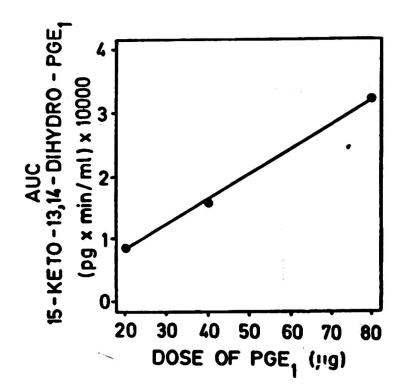


Fig. 4: Relationship between AUC_{0-120} for 15-keto-13,14-dihydro-PGE₁ and dose of PGE₁ administered by intravenous infusion over a time period of 60 min.

disease treated with intravenous infusions of PGE_1 (6). The concentrations of the metabolite found were, however, rather low with 16 ± 5 pg/ml at the end of a 60 min infusion of 80 µg PGE_1 /patient (6). These levels are more than 30 times lower than those found for KH_2PGE_1 under identical infusion conditions in human volunteers (*Fig. 2*). It remains to be investigated, to which extent formation of small amounts of H_2PGE_1 from the major initial metabolite KH_2PGE_1 could contribute to the therapeutic effects of PGE_1 administered intravenously to patients with peripheral arterial occlusive disease.

Acknowledgements. This work was in part supported by the Deutsche Forschungsgemeinschaft (Pe 256/4-1).

REFERENCES

- 1. Carlson LA, Olsson AG. Intravenous prostaglandin E_1 in severe peripheral vascular disease. Lancet 1976; ii: 810.
- Sinzinger H, Virgolini I, O'Grady J. Clinical trials of PGE₁, PGI₂ and mimetics in patients with peripheral vascular disease. In: Prostaglandins in Clinical Research, (Schrör K and Sinzinger H, eds.) Alan Liss Inc, New York, 1989: 85-96.
- 3. Golub M, Zia P, Matsuno M, Horton R. Metabolism of prostaglandins A₁ and E₁ in man. J Clin Invest 1975; 56: 1404–1410.
- **4.** Änggård E. The biological activity of three metabolites of prostaglandin E_1 . Acta physiol scand 1966; 66: 509-510.
- 5. Westwick, J. The effect of pulmonary metabolites of prostaglandins E_1 , E_2 and F_{1a} on ADP-induced aggregation of human and rabbit platelets. Br J Pharmacol 1976; 58: 297P—298P.
- 6. Hesse WH, Matamoros R, Horsch S, Peskar BA. On the metabolism of prostaglandin E_1 in porcine lung homogenates and human circulation. In: Thrombosis and Haemorrhagic Disorders. Proc 6th Int Meeting Danubian League against Thrombosis and Haemorrhagic Disorders (Sinzinger H and Vinazzer H, eds.) 1989: 437-440.
- Fitscha P, Simmet T, Peskar BA, Reuter H, Sinzinger H, Rogatti W, Tilsner V. Untersuchungen zur fibrinolytischen Aktivitat, Thrombozytenfunktion und Pharmakokinetik während intraarterieller oder intravenöser Prostaglandin-E₁-Infusion bei Patienten mit chronisch arterieller Verschlußkrankheit. Wien Klin Wochenschr 1988; 100: 477-481.
- 8. Bothwell W, Verburg M, Wynalda M, Daniels EG, Fitzpatrick FA. A radioimmunoassay for the unstable pulmonary metabolites of prostaglandin E_1 and E_2 : An indirect index of their in vivo disposition and pharmacokinetics. J Pharmacol Exp Ther 1982; 220: 229-235.
- 9. Hamberg M, Samuelsson B: On the metabolism of prostaglandin E_1 and E_2 in man. J Biol Chem 1971; 246: 6713-6721.
- Simmet Th, Peskar BA, Wolf HRD. On the metabolism of prostaglandin E₁ in patients suffering from arterial occlusive disease. In: Prostaglandin E₁ in Atherosclerosis (Sinzinger H, Rogatti W, eds.) Springer-Verlag, Heidelberg 1986: 8-12.

Received: Jaunary 25, 1991

Accepted: February 6, 1991

Author's address: Department of Pharmacology and Toxicology Ruhr — University of Bochum, D-4630 Bochum

2