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Summary

In this paper, we consider the chemical balanceghweg designs for estimation of
individual unknown weights of three objects usingptimality criterion. We assume that the
error components create a first-order autoregressivcess AR(1). Then, the covariance matrix
of random errors has known form, which does notehtavbe identity matrix and depends on
known parametep. In this paper, we prove D-optimality of some dasfgom Bora-Senta and
Moyssiadis (1999), in= 2 (mod4), in the whole class of designs for three objects sorde
p < 0. Under these assumptions, we present the necemsdrsufficient conditions such that the
weighing design for three objects is D-optimal. Jdeconditions can be used to construct
D-optimal designs.
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1. Introduction

In the paper we consider the chemical balance, avhach object can be
placed on one of two pans (left and right). A regdiepresents the total weight
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of the objects on the pans. We would like to choasehemical balance
weighing design that is optimal with respect to [@kmality criterion, which we
define below.

At the beginning, we introduce a model for chemibalance weighing

design for three objects. We estimate the true owknweights w,,w,,w, of
three objects employinn measuring operations using a chemical balance. Let

Y1) Yo, ..., Y, denote the observations in theneoperations, respectively. We
assume that the observations follow the linear mcy = X® +¢&, where
Y =[Y1s Yo,---» ¥,]" is annx1 vector of observation:® =[w,,w,,w,]" is

the vector of unknown weights of objects, nx3 matrix X =[x;] is called

the design matrix, the vectce =[g,,€,,...,€,]" is the vector of error
components. In the chemical balance weighing deswe suppose that
X; ==1(x; =1) if thejth object is placed on the left (right) pan durthgith
weighing operation. We consider the case when #meloam errors form an
AR(1) process which implies thiE(e) = [0,0,...,0]" is an nx1 nil vector
andVar () =1/(1-p®)S, whereS= (p" )7 ., and-1< p <1. We identify
the design with its matri X.

The D-optimal chemical balance weighing design mézes the
determinant of the information matt X'S™X. More precisely, the desig)z is
D-optimal in the class of the desigrC O M _.(x1), where the set

M., (£1) consists of all matrices wit rows, p columns and elemenZlsor

-1, if det(X'S™X) = max{det(X'S™X): X OC}.
The case, when the matiS is the identity matri>(p = 0), is well known

and the D-optimal designs are considered in mamensa(see, e.g. Galil and
Kiefer (1980), or Jacroux et al. (1983)). Ip # 0, Bora-Senta and Moyssiadis

(1999) gave some conjectures (based on severaligiea searches) about D-
optimal chemical balance  weighing designs  with foasr

X =01, |x|y]OM, (xD,where 1, is the vector of n ones. These
conjectures were proved in Li and Yang (2005) amth dnd Lo Huang (2005)
for n=0(mod4),p0(-11) and n=2(mod4),p>0. For some
-1<p<0 andn=0(mod4), some construction of D-optimal design in the

class of designs such that each column of the desairix X contains at least
onel and one—1 were considered in Katulska and Smaga (2010) atdiska
and Smaga (accepted).

nx3
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Some results about D-optimal designs in the clas$akesigns with matrices
X=[x|y|z]OM (D and X =[1, | x|y |z]OM,,,(£1) for somep = O
are given in Katulska and Smaga (2012) and Katukskd Smaga (2011),
respectively.

In Theorem 2.5 of paper, we prove the conjectuoenfBora-Senta and
Moyssiadis (1999), in =2 (mod4) and somep <0 in the class
The necessary and sufficient conditions under whhiehdesign is D-optimal in
the class of designs with these assumptions avegalen.

2. D-optimal chemical balance weighing designs

In this section, we present the main results brit five give some
definitions and supporting results.

For any vectoX =[X;, X,, ..., X,]'LUM ., (¥D) , we define the numbers
cs(X) ##{i: X = —X,,,1<i<n-1},

fes(x) =min{i: x = -x,,,1<i<n-1},

scs(x) =min{i :i > fcs(x), X, = —X,,,1<i<n-1}.

We obtain the following lemma directly from propest of determinants
(see Horn and Johnson, 1985).

Lemma 2.1. If XOM . (x1) and G is the nxn real matrix, then the

nxp
determinant of the matri: X'GX does not change if we interchange two
columns of the matri X or we multiply any column of this matrix t—1.

Below, we remind well known inequality.

B
Lemma 2.2. (Fischer's inequality)f P = {

C
o D} IS a positive definite matrix

that is partitioned so thaB and D are square and nonempty, then
det(P) < detB)detD) and the equality holds if and onlyC = 0.

Lemma 2.3. Suppose thathn=2(mod4) and A=012,...,n-1. If
A=(n-2)(1-p)*+2(l-p), p20 and xOM _,(+1), then cs(x) = if
and only if X' Ax = A + 4Ap, where

nx1
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1 -p 0 - 0 O
-p +p* -p - 0 O
0 -p 1+p* -~ 0 O

L (2.2)
0 © 0 - 1+p® -p
‘0 0 0 - -p 1]

Proof. The thesis follows from equality
X'AX = (N=2)(1+p%) +2-2p(X X, + XXy -+ X, 1 X,). m

The next lemma follows from proofs in Yeh and Loadg (2005) and
some direct calculations.

Lemma 2.4. Let

X =X, Xpyens X1,V =Y Voo ens y,JOM (D, n=2(mod4) and
the matrix A is defined by (2.1).
(@) If cs(x) = cs(y) =1, fes(x) > fes(y), then

Ay = (n-2fes(x) +2fes(y) —2)A1-p)° +2L-p)  if x, =y,
— ((n-2fcs(x) + 2fcs(y) - 2)A-p)* +20-p)) if x Zy,

(b) If cs(x) =0, cs(y) =2, then

CAY = { (n+2fes(y) - 2scs(y) ~29)(1-p)* +20-p)  if x, =y,
- ((n+2fes(y) - 2ses(y) = 2)(L-p)* + 20-p)) if X, # Y,

(c) If cs(x) =0, cs(y) =1, then

Ay =] @fesy)-m@a-p)* if x, =y,
- (2fesly) -n)(1-p)? if x £y,

(d) If cs(x) =1, fes(x) =n/2,¢cs(y) =2, b= fes(y), ¢ =scs(y), then
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2(b+c-n)(L-p)? if x, =y,,b<n/2,c>n/2

-2(b+c-n)(1-p)° if x, Zy,,b<n/2,c>n/2

(n-4)1-p)? + 2(L+p?) if (x, Zy,,b=1c=n/2)or
(x, =y,,b=n/2,c=n-1)

~[(n-4)(@1-p)* +20+p*)]  if (x, =y,,b=1c=n/2)or
(x, Zy,,b=n/2,c=n-1)

X'Ay =

Now, we formulate new theorems concerningf@imal chemical balance
weighing designs under the assumption that theoranerrors form a process
AR(1). First, we prove that some design is D-optimeighing design for three
objects and somp < 0.

Theorem 25. Let n = 2 (mod 4), n # 2 and pO(-1-1/(n-2)]0{0} if
n=610...,22 and pO(-4/(n-8),~1/(n-2)]0{0} if n=26. Then
the design with the matrix

1 1 1
1 1 1
1 1 -1,
Lol 1 0 -1
X = , (2.2)
1 -1, -1
1 -1 -1
1 -1 1
1 -1 1

where elements with indices1,2 and 3 are in positions
(n [12+1], 2), ((n -2)/4+ 2, 3), (3(n -2)/4+ 2, 3), respectively, is D-optimal
chemical balance weighing design for three objects.
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Proof. (Sketch) The inverse of the matiS is equal toS™ =1/(1-p?)A,

where the matri: A is given by (2.1). The matriA is positive definite. From
definition of D-optimal design and the inverse lo¢ imatrixS we obtain the D-

optimal design in the class of desigtC UM, (£1) maximizes the
determinant of the matriX'AX among al X [1C.
From Lemmas 2.3 and 2.4 for the ma X : of the form (2.2), we have
A 0 21-p)
detX'AX)=det 0 A+4p 0 |=(A+4p)[A(A+8p)-4L-p)?].
20-p) 0 A+8p
When p =0, then the matri: A is the identity matrix and
n 0 2
det(X'AX) =det(X'X)=det 0 n 0|=n®-4n.
2 0 n
Hence X is D-optimal from Jacroux et al. (1983). From now, we assume
that p# 0. It is easy to see that the mat X'AX is positive definite. By
Lemma 2.1, we can suppo X, =Y, =z =1 and consider only the designs
with matrices X =[x |y |z]OC, O C, OC;, where

C,={[a|B|Y]OM 4(x1):cs(a) 21 cs(B) =1, cs(y) 22},
C, ={[a|B[v]TM () :cs(a) =0, cs(B) = 1, cs(y) 21},
C; ={[a|B|Y]OM ,5(£1): cs(a) = cs(B) = cs(y) =1}.

We show that det()A('A)A()zdet(X'AX) for all XOC,,i=1 2,3. For

example, we present the proof X =[x |y |z] OC,.Then from Hadamard's

inequality, the determinant of the mat X' AX is less or equal to the product
of the diagonal elements of this matrix det(X'AX) < (X'Ax)(y'Ay)(z'Az).

From Lemma 2.3, we obtain the inequalitxX' AX< A +4p, y'Ay <A +4p,
Z'Az < A +8p. Therefore we concluddet(X' AX) < (A +4p)*(A +8p) and
det(X' AX) — det(X' AX) = det(X' AX) — (A + 4p) % (A + 8p)

=4D+4p)-(n-2)p° + (2n-1)p* - (n-2)p-1] > O,
which completes the proad.
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From the proof of Theorem 2.5, it follows that ﬂl&sign)A( given by (2.2)
is D-optimal in some large subclass of the cléM,;(+1) for all

pO(-1 —-1/(n-2)] {0}, what we describe in the following corollary
Corollary 2.6. If pJ(-1 —-1/(n—2)] {0} andn=2(mod4), n# 2, then
the desigr)A( given by (2.2) is D-optimal in the class

{{a[BlY]OM (1) :cs(a) 20, cs(B) =1 cs(y) = 20r cs(a) = cs(B) = cs(y) =1}

Now, we prove some necessary and sufficient canditunder which the
design for the three objects is the D-optimal.

Theorem 27. If n and p are the same as in Theorem 2.5,

X =[xy |Z10M,,(£]), then the desig X" is D-optimal in the class of
designs for three objects if and only if

A 0 +2(-p)
0  A+4p 0 (2.3)
+21-p) O A+8p

X'AX

exact to permuting columns of the mai X .

Proof. We present the proof p # 0. First, we prove the sufficient condition.
If the designX’ satisfies the equality (2.3), then by Theorem \2¢5 obtain
det(X"'AX") =det(X'AX), so the desigrX is D-optimal in M _,(+1).

Now, we present the necessary condition. Assume X ais the D-optimal
design for three objects. So by Theorem 2.5, we clode that

det(X'AX") = det(X' AX) = (A + 4p)[A(A +8p) — 41-p)?].  From the
proof of Theorem 2.5, we obtadet(X 'AX") > det(X'AX) for all designs
XOM (D) \ B, where

B={[a||3|v]:cs(a)=o,cs(|3)=lcs(v)=2, foo() =, ses(y) - fcs(v)vfg}.

nx3

If X" 0B, then from Lemma 2.3 it follows that
X 'AX =A,y'Ay =A+4p andz 'Az =A+8p. By Lemma 2.1:
detX'AX") =det(x" |z |y TA[X |Z |Y']).
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From Fischer’s inequality, we obtain the followimgquality
det(X 'AX") < (A+4p)[A(A+8p) - (X 'AZ")?]. (2.4)

The equality in (2.4) holds if and only X 'Ay” =y 'Az" = 0. Moreover,
from the fact thascs(z') - fcs(z') # n/2 and Lemma 2.4 (b), it follows that
(X'Az )= 4(1-p)*> and the equality holds if and only if
X'Az" =+2(1-p). Therefore, we obtain the following inequality

det(X"'AX") < (A +4p)[A(A +8p) — 41— p)?] = det(X'AX). (2.5)

But as we noted at the beginning of the proof mitirequality (2.5) there must
be equality. Sox 'Ay =y 'Az =0,x"'Az =+2(1-p) and the matrix
X"'AX" has the form (2.3

Theorem 28. Let n=2(mod4),n#2 and pO(-1-1/(n-2)] if
n=610,...,22 and pO(-4/(n-8),-1/(n-2)] if n=26. Then the
design X" =[x" |y |2 ]OM ,,(x1) is D-optimal in the class of designs for
three objects if and only ifcs(x’)=0, cs(y’)=1 cs(z')=2 and
fes(y')=n/2, fcs(z')=(n-2)/4+1, scs(z')=3(n—2)/4+1 exact to
permuting columns of the matr X".

Proof. The sufficient condition is easy to see, becausm fLemmas 2.3
and 2.4, we conclude that the maiX 'AX  has the form (2.3) and hence by
Theorem 2.7, the desicX" is D-optimal design for three objects. Proof of

necessary condition is as follows. LX™ be the D-optimal design for three
objects. So the matr X 'AX" has the form (2.3) by Theorem 2.7.

From Lemma 23, it follows that X 'AX =A < ¢cs(x')=0,
y'Ay =A+4p - cs(y')=1 and Z'AZ =A+8p < cs(z')=2.
Moreover, from Lemma 2.4 (c), we have
XAy =+(2fcs(y’) -n)A-p)® =0, so fcs(y ) =n/2. From the equality
X"'Az =+2(1-p) and Lemma 24 (b), we  obtain
scs(z') - fes(z') =n/2-1. Hence and from the fact thy 'Az" =0 we
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have (by Lemma 2.4 (d))fcs(z')<n/2, scs(z')>n/2 and hence
y 'AZ =+2(fcs(z') +scs(z') - n)(1-p)* =0 which implies
fes(z') +scs(z) = n.

Therefore fcs(z') = (n—2)/4+1, scs(z') =3(n-2)/4+1. So the thesis is
proved.m

Using Theorems 2.7 and 2.8, D-optimal chemicalrxzdaveighing designs

(other thar X ) for the three objects under the assumption tieatandom errors
form a process AR(1) can be constructed.
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