PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |

Tytuł artykułu

Photocatalytic degradation of synthetic textile effluent by modified Sol-Gel, synthesized mobilized and immobilized TiO2, and Ag-doped TiO2

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Advanced oxidation processes (AOPs) have proven to be very effective for treating various hazardous organic pollutants in water. The present study uses a double-walled horizontal glass reactor (DHGR) to investigate heterogeneous UV/TiO2 (titanium dioxide) and UV/Ag-TiO2 (mobilized and immobilized) photocatalytic degradation of synthetic textile effluent (Remazol Red RGB) with UV (400W). The textile effluent was characterized in terms of pH, chemical oxygen demand (COD), and degree of decolorization (at 519 nm) before and after treatment. Optimum degradation results were obtained at pH3. We also found that with different catalysts and catalyst doses, the rate of degradation rises up to a maximum “critical” value. The electron scavenger was Ag-led to a faster degradation of synthetic textile effluent in the photocatalytic system. The photocatalytic degradation proved to be dependent on the effluents’ initial COD, catalyst dose, catalyst form, and pH of the medium. Results reveled that among different forms of catalysts, Ag-TiO2 (Mesh) and TiO2 (0.5 g) showed better COD percentage and ABS percentage removal at pH3 with initial concentrations of synthetic effluent 560mg/l under UV(400W) irradiation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.1391-1402,fig.,ref.

Twórcy

autor
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore 5459, Pakistan
  • Department of Science Education (IER), University of the Punjab, Lahore 54590, Pakistan
autor
  • Institute of Geology, University of the Punjab, Lahore 5459, Pakistan
autor
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore 5459, Pakistan

Bibliografia

  • 1. BISSCHOPS I., SPANJERS H. Literature review on textile wastewater characterisation. Environ. Technol. 24, 1399, 2003.
  • 2. IMTIAZUDDIN, S.M., MUMTAZ, M., MALLICK, K. A. Pollutants of Wastewater Characteristics in Textile Industries. J. Basic. Appl. Sci. 8, 554, 2012.
  • 3. REGULSKA E., BRUS D.M., KARPINSKA J. Photocatalytic decolourization of direct yellow 9 on titanium and zinc oxides. Int. J. Photoenergy. 1, 2013.
  • 4. AZBAR N., YONAR T., KESTIOGLU K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and colour removal from a polyester and acetate fiber dyeing effluent. Chemosphere. 55 (1), 35, 2004.
  • 5. YUSUFF R.O., SONIBARE J.A. Characterization of textile industries effluents in kaduna, Nigeria and pollution implications. Global Nest: the Int. J. 6 (3), 212, 2004.
  • 6. HUSSEIN F.H. Effect of photocatalytic treatments on physical and biological properties of textile dyeing wastewater. Asian J. Chem. 25 (16), 9387, 2013.
  • 7. COMNINELLIS C., KAPALKA A., MALATO S., PARSONS S.A., POULIOS I., MANTZAVINOS D. Perspective Advanced oxidation processes for water treatment: advances and trends for R and D. J. Chem. Technol. Biotechnol. 83, 769, 2008.
  • 8. HANIF A.M., NADEEM R., ZAFAR N.M., BHATTI N.H., NWAZ R. Physico-chemical treatment of textile wastewater using natural coagulant cassia fistula (golden shower) pod biomass. J. Chem. Soc. Pak. 30 (3), 385, 2008.
  • 9. SEO J.S., KEUM Y.S. AND LI Q.X. Bacterial degradation of aromatic compounds. Int. J. Environ. Res. Public health. 6, 278, 2009.
  • 10. HONADE S., SHRIVASTAVA N. Oxidative processes in effluent treatment. J. Textile Assoc. 71, 5, 2010.
  • 11. OLLER I., MALATO S., SANCHEZ-PEREZ J.A. Combination of advance oxidation processes and biological treatment of wastewater decontamination-A review. Sci. Total Environ. 409 (20), 4141, 2011.
  • 12. KAUR H., SHARMA G. Removal of Dyes from Textile Industry Effluent: A Review. SSRG- IJHSS. 59, 2015.
  • 13. NAWAZ S.M., AHSAN M. Comparison of physicochemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alexandria Eng. J. 53 (3), 717, 2014.
  • 14. STASINAKIS A.S., Use of selected advanced oxidation processes (AOPs) for wastewater treatment – a mini review. Global Nest: the Int. J. 10 (3), 376, 2008.
  • 15. TOUAT A., HAMMEDI T., NAJJAR W., KSIBI Z., SAYADI S. Photocatalytic degradation of textile wastewater in presence of hydrogen peroxide: Effect of cerium doping titania. J. Ind. Eng. Chem. In press. 2015.
  • 16. MOHAJERANI M., MEHRVAR M., EIN-MOZAFFARI F. An overview of the integration of advanced oxidation technologies and other processes for water and wastewater treatment. Int. J. Eng. 3 (2), 120, 2009.
  • 17. KLAVARIOTI M., MANTZAVINOS D., KASSINOS D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35, 402, 2009.
  • 18. SIMA J., HASAL P. Photocatalytic degradation of textile dyes in aTiO2/UV system. Chem. Eng. Trans. 32, 2013.
  • 19. CHEN F., ZOU W., QU W., ZHANG J. Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process. Catal Commun. 10, 1510, 2009.
  • 20. GRZECHULSKA-DAMSZEL J., TOMASZEWSKA M., MORAWSK A.W. Integration of photocatalysis with membrane processes for purification of water contaminated with organic dyes. Desalination, 241, 118, 2009.
  • 21. RAUF M.A., BUKALLAH S.B., HAMMADI A., SOLIMAN A., HAMMADI F. The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5 /TiO2. Chem. Eng. J. 129, 167, 2007.
  • 22. SONG L., ZENG X., ZHANG X. Application of poly (fluorene-co-bithiophene) as a novel sensitizer for TiO2 in the photodegradation of phenol under irradiation of GaN LED cluster. React. Kinet. Mech. Cat. 102 (2), 295, 2011.
  • 23. AHMED S., RASUL M. G., MARTENS W. N., BROWN R. HASHIB M. A. Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Poll. 215, 3, 2011.
  • 24. MOHAMED A.E.R., ROHANI S. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energ. Environ. Sci. 4 (4), 1065, 2011.
  • 25. DIEBOLD U. Photocatalysts: Closing the gap. Journal name: Nat. Chem. 3, 271, 2011.
  • 26. ZALESKA A. Doped-TiO2: A Review. Recent Pat. Eng. 2, 157, 2008.
  • 27. WANG Q., JIANG Z., WANG Y., CHEN D., YANG D. Photocatalytic properties of porous C-doped TiO2 and Ag/ C-doped TiO2 nanomaterials by eggshell membrane templating. J. Nanopart. Res. 11, 375, 2009.
  • 28. SHAO R., SUN L., TANG L., CHEN Z. Preparation and characterization of magnetic core-shell ZnFe2O4 with ZnO nanoparticles and their application for the photodegradation of methylene blue. Chem. Eng. J. 217, 185, 2013.
  • 29. SHARMA K., SINGH G., SINGH G., KUMAR M., BHALLA V. Silver nanoparticles: facile synthesis and their catalytic application for the degradation of dyes. RSC Adv. 5, 25781, 2015.
  • 30. VANAJA M., PAULKUMAR K., BABURAJA M., RAJESHKUMAR S., GNANAJOBITHA G., MALARKODI C., SIVAKAVINESAN M., ANNADURAI G. Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg. Chem. Appl. Article ID 742346, 2014.
  • 31. ABHANG R.M., KUMAR D., TARALKAR S.V. Design of photocatalytic reactor for degradation of phenol in wastewater. Int. J. Chem. Eng. Appl. 2 (5), 337, 2011.
  • 32. MCCULLAGH C., SKILLEN N., ADAMS M., ROBERTSON P.K.J. Photocatalytic reactors for environmental remediation: a review. J. Chem. Technol. Biotechnol. 86 (8),1002, 2011.
  • 33. MOTEGH M., OMMEN J.R., APPEL PETER W.M.T. Scale-up study of a multiphase photocatalytic reactor – degradation of cyanide in water over TiO2. Environ. Sci. Technol. 48 (3), 1574, 2014.
  • 34. BIRNIE M., RIFFAT S., GILLOTT M. Photocatalytic reactors: design for effective air purification. Int. J. Low-Carbon Tech. 1 (1), 47, 2006.
  • 35. CALIMAN A.F., BALASANIAN I. Reactors for application in heterogeneous photocatalysis. Environ. Eng. Manag. J. 4 (3), 371, 2005.
  • 36. SERRANO B., ORTIZ A., MOREIRA J., LASA H.I. Photocatalytic thermodynamic efficiency factors: practical limits in photocatalytic reactors. Ind. Eng. Chem. Res. 49 (15), 6824, 2010.
  • 37. JEON J.H., KIM S.D., LIM T.H., LEE D.H. Degradation of trichloroethylene by photocatalysis in an internally circulating slurry bubble column reactor. Chemosphere. 60, 1162, 2005.
  • 38. NOISOMRAN R., KHONGTHON W., SANGVANICH P., PAVARAJARN V. Photocatalytic degradation of diuron in microreactor, AIChE J. Article ID. 427520, 2015.
  • 39. ZHANG Q., ZHANG Q., WANG H. LI Y. A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol. J. Hazard. Mater. 254-255 (1), 318, 2013.
  • 40. PIERA E., CALPE J.C., BRILLAS E., DOMENECH X., PERAL J. 2, 4-dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO2/UVA/O3 and Fe (II)/UVA/O3 Systems. Appl. Catal. B: Environ. 27, 169, 2000.
  • 41. BUSCIO V., BROSILLON S., MENDRET J., CRESPI M., GUTIÉRREZ-BOUZÁN C. Photocatalytic membrane reactor for the removal of C.I. disperse Red 73. Materials. 8, 3633, 2015.
  • 42. SEERY K.S., GEORGE R., FLORIS P., PILLAI S.C. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A: Chem. 189, 258, 2007.
  • 43. DONG Q., SU H., ZHNG D., LIU Z., LAI Y. Synthesis of hierarchical mesoporous titania with interwoven networks by eggshell membrane directed sol-gel technique. Micropor. Mesopor. Mat. 98, 344, 2007.
  • 44. Dystar. Shade card of reactive dyes. Dystar Gmbh. Germany, 2000.
  • 45. APHA. Standard Methods for the examination of water and wastewater. Am. Public Health Assoc. Washington D.C., 20th Edition 1998.
  • 46. SONG S., SHENG Z., LIU Y., WANG H., WU Z. Influences of pH value in deposition-precipitation synthesis process on Pt-doped TiO2 catalysts for photocatalytic oxidation of NO. J. Environ. Sci. 24 (8), 1519, 2012.
  • 47. GNANAPRAKASAM A., SIVAKUMAR V.M., THIRUMARIMURUGAN M. Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. Indian J. Mater. Sci. ArticleID 601827, 2015.
  • 48. Gümüş D., Akbal F. Photocatalytic degradation of textile dye and wastewater. Water Air Soil Poll. 216 (1), 117, 2011.
  • 49. Arimi A., Farhadian M., Reza A., Nazar S., Homayoonfal M. Assessment of operating parameters for photocatalytic degradation of a textile dye by Fe2O3/TiO2/clinoptilolite nanocatalyst using taguchi experimental design. Res. Chem. Intermediat. 1-20, 2015.
  • 50. ZHAO H., XU S., ZHONG J., BAO X. Kinetic study on the photocatalytic degradation of pyridine in TiO2 suspension systems. Catal. Today. 93-95, 857, 2004.
  • 51. KANSAL S.K., KAUR N., SINGH S. Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts. Nanoscale Res. Lett. 4, 709, 2009.
  • 52. HU C., TANG Y.C., YU J.C., WONG P.K. Characterization and photocatalytic activity of nobelmetal- supported surface bond-conjugation TiO2/SiO2 for the destruction of azo dye. Appl. Catal. B: Environ. 40, 131, 2003.
  • 53. Hu C., Wang Y.Z., Tang H.X. Influence of adsorption on the photodegradation of various 441 dyes using surface bond-conjugated TiO2/SiO2 photocatalyst. Appl. Catal. B: Environ. 35, 95, 2001.
  • 54. CHITRA S., PARAMASIVAN K., SINHA P.K., LAL K.B. Ultrasonic treatment of liquid waste containing ED TA. J. Clean Prod. 12, 429, 2004.
  • 55. HONG LI., ZHAO G., SONG B., HAN G. Effect of incorporation of silver on the electrical properties of Sol-Gel-Derived Titanium Film. J. Cluster Sci. 19, 667, 2008.
  • 56. ZOU J., CHEN C., LIU C., ZHANG Y., HAN Y., CUI L. Pt nanoparticles on TiO2 with novel metal – semiconductor interface as highly efficient photocatalyst. Mater. Lett. 59 (27), 3437, 2005.
  • 57. POONGODI G., KUMAR R.M., JAYAVEL R. Structural, optical and visible light photocatalytic properties of nanocrystalline Nd doped ZnO thin films prepared by spin coating method. Ceram. Int. 41 (3), 4169, 2015.
  • 58. LIU C.C., LAI P.F., LI C.H., KAO C.L. Photodegradation treatment of azo dye wastewater by UV/TiO2 process. Dyes. Pigments. 12, 191, 2006.
  • 59. BIZANI E., FYTIANOS K., POULIOS I., TSIRIDIS V. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J. Hazard Mater. 136, 85, 2006.
  • 60. REDDY S.S., KOTAIAH B. Decolorization of simulated spent reactive dye bath using solar / TiO2 / H2O2. Int. J. Environ. Sci. Technol. 2, 245, 2005.
  • 61. HASNAT M.A., SIDDIQUEY I.A., NURUDDIN A. Comparative photocatalytic studies of degradation of a cationic and an anionic dye. Dyes. Pigments. 66, 185, 2005.
  • 62. BAHNEMANN D., BOCKELMANN D., GOSLICH R. Mechanistic studies of water detoxification in illuminated TiO2 suspensions. Sol. Energ. Mat. 24, 564, 1991.
  • 63. KANEKO M., OKURA I. Photocatalysis: Science and Technology, Springer Berlin Heidelberg. 2002.
  • 64. NAOI K., OHKO Y. TATSUMA T. Switchable rewritabilityof Ag-TiO2 nanocomposite films with multicolor photochromism. Chem. Commun. 10, 1288, 2005.
  • 65. CHEN W., ZHANG J., FANG Q. Sol-gel preparation of thick titania coatings aided by organic binder materials. Sens. Actuators B. 100 (1-2), 195, 2004.
  • 66. SUBRAMANIAN V., WOLF E.E., KAMAT P.V. Semiconductormetal composite nanostructures: To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?J. Phys. Chem. B. 105 (46), 11439, 2001.
  • 67. D’OLIVEIRA J.C., AL-SAYYED G., PICHAT P. Photodegradation of 2- and 3-chlorophenol in TiO2 aqueous suspensions. Environ. Sci. Technol. 24, 990, 1990.
  • 68. BARKA N., QOURZAL S., ASSABBANE A., AIT-ICHOU Y. Kinetic modeling of the photocatalytic degradation of methyl orange by supported TiO2. J. Environ. Sci. Eng. 4, 1, 2010.
  • 69. LACHHEB H., PUZENAT E., HOUAS A., KSIBI M., ELALOUI E., GUILLARD C., HERRMANN J.M. Photocatalytic degradation of various types of dyes (alizarin s, crocein orange g, methyl red, congo red, methylene blue) in water by UV Irradiated titania. Appl. Catal. B: Environ. 39, 75, 2002.
  • 70. GUILLARD C., LACHEB H., HOUAS A., KSIBI M., ELALOUI E., HERRMANN J.M. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J. Photochem. Photobiol. A: Chem. 158, 27, 2003.
  • 71. BHAKYA, S., MUTHUKRISHNAN, S., SUKUMARAN, M., MUTHUKUMAR. M, SENTHIL K. T., RAO M.V. Catalytic degradation of organic dyes using synthesized silver nanoparticles: a green approach. J. Biorem. Biodegrad. 6, 312, (2015).
  • 72. TOOR A. P., VERMA A., JOTSHI C.K., BAJPAI P.K., SINGH, V. Photocatalytic degradation of direct yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes. Pigments. 68, 60, 2006.
  • 73. MROWETZ M., PIROLA C., SELLI E. Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2. Ultrason. Sonochem. 10, 247, 2003.
  • 74. SILVA C G., WANGAND W., FARIA J.L. Photocatalytic and photochemical degradation of mono-,di-,and tri-azo dyes in aqueous solution under UV irradiation. J.Photochem. Photobiol. A: Chem. 181 (2-3), 314, 2006.
  • 75. FAISAL M., ABU TARIQ M., MUNEER M. Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania. Dyes. Pigments. 72 (2), 233, 2007.
  • 76. DEVADI A. H. M., KRISHNA M., MURTHY H.N.N., SATHYANARAYANA B.S. Statistical optimization for photocatalytic degradation of methylene blue by Ag-TiO2 nanoparticles. procedia Mater. Sci. 5, 612, 2014

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-eab31107-7d43-4d9d-9b2b-6914dc4a3fa6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.