PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 70 | 11 |

Tytuł artykułu

Wybrane aspekty stosowania organizmów genetycznie zmodyfikowanych w żywieniu zwierząt gospodarskich i medycynie weterynaryjnej

Warianty tytułu

EN
Selected aspects of usage of genetically modified organisms in livestock feeding and veterinary medicine

Języki publikacji

PL

Abstrakty

EN
Genetically modified organisms are those in which the genome has been changed by the application of genetic engineering techniques in order to elicit desired properties. Currently, transgenic plants being grown for food and feed purposes are resistant to herbicides, insect pests or diseases. In the future, genetic engineering will serve to enrich feed and food in respect to desirable nutrients. Recent studies have described the ability to control the qualitative and quantitative composition of fatty acids in vegetable oils, the composition of deficient amino acids in cereals and other forage crops, or enrich plants in an easily accessible phosphorus for monogastric animals. Genetic engineering of plants may also allow for the production of vaccines and immunization of animals with plants along with the administered feed. Conducted experimental work indicates the possibility of the production of vaccines, specific proteins or other types of pharmaceutical relevance in veterinary medicine in plant tissue.

Wydawca

-

Rocznik

Tom

70

Numer

11

Opis fizyczny

s.663-668,bibliogr.

Twórcy

autor
  • Zakład Higieny Pasz, Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy, Al.Partyzantów 57, 24-100 Puławy
autor
  • Zakład Higieny Pasz, Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy, Al.Partyzantów 57, 24-100 Puławy
autor
  • Zakład Higieny Pasz, Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy, Al.Partyzantów 57, 24-100 Puławy

Bibliografia

  • 1. Bae J. L., Lee J. G., Kang T. J., Jang H. S., Jang Y. S., Yang M. S.: Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen. Vaccine. 2003, 21, 4052-4058.
  • 2. Bartholomaeus A., Parrott W., Bondy G., Walker K.: ILSI International Food Biotechnology Committee Task Force on Use of Mammalian Toxicology Studies in Safety Assessment of GM Foods. The use of whole food animal studies in the safety assessment of genetically modified crops: limitations and recommendations. Crit. Rev. Toxicol. 2013, 43, 1-24.
  • 3. Berinstein A., Vazquez-Rovere C., Asurmendi S., Gomez E., Zanetti F., Zabal O., Tozzini A., Conte Grand D., Taboga O., Calamante G., Barrios H., Hopp E., Carrillo E.: Mucosal and systemic immunization elicited by Newcastle disease virus (NDV) transgenic plants as antigens. Vaccine. 2005, 23, 5583-5589.
  • 4. Bohme H., Rudloff E., Schone F., Schumann W., Huther L., Flachowsky G.: Nutritional assessment of genetically modified rapeseed synthesizing high amounts of mid-chain fatty acids including production responses of growing-finishing pigs. Arch. Anim. Nutr. 2007, 61, 308-316.
  • 5. Carrillo C., Wigdorovitz A., Oliveros J. C., Zamorano P. I., Sadir A. M., Gomez N., Salinas J., Escribano J. M., Borca M. V.: Protective immune response to foot-and-mouth disease virus with VP1 expressed in transgenic plants. J. Virol. 1998, 72, 1688-1690.
  • 6. Carrillo C., Wigdorovitz A., Trono K., Dus Santos M. J., Castanon S., Sadir A. M., Ordas R., Escribano J. M., Borca M. V.: Induction of a virus-specific antibody response to foot and mouth disease virus using the structural protein VP1 expressed in transgenic potato plants. Viral Immunol. 2001, 14, 49-57.
  • 7. Chen R., Zhang C., Yao B., Xue G., Yang W., Zhou X., Zhang J., Sun C., Chen P., Fan Y.: Corn seeds as bioreactors for the production of phytase in the feed industry. J. Biotechnol. 2013, 165, 120-126.
  • 8. Denbow D. M., Grabau E. A., Lacy G. H., Kornegay E. T., Russell D. R., Umbeck P. F.: Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poultry Sci. 1998, 77, 878-881.
  • 9. Domingo J. L., Gine Bordonaba J.: A literature review on the safety assessment of genetically modified plants. Environ. Int. 2011, 37, 734-742.
  • 10. Dus Santos M. J., Carrillo C., Ardila F., Rios R. D., Franzone P., Piccone M. E., Wigdorovitz A., Borca M. V.: Development of transgenic alfalfa plants containing the foot and mouth disease virus structural polyprotein gene P1 and its utilization as an experimental immunogen. Vaccine. 2005, 23, 1838-1843.
  • 11. Dus Santos M. J., Wigdorovitz A., Trono K., Rios R. D., Franzone P. M., Gil F., Moreno J., Carrillo C., Escribano J. M., Borca M. V.: A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants. Vaccine. 2002, 20, 1141-1147.
  • 12. Flachowsky G., Aulrich K., Bohme H., Halle I.: Studies on feeds from genetically modified plants (GMP) – Contributions to nutritional and safety assessment. Anim. Feed Sci. Tech. 2007, 133, 2-30.
  • 13. Flachowsky G., Schafft H., Meyer U.: Animal feeding studies for nutritional and safety assessments of feeds from genetically modified plants: a review. J. Verbr. Lebensm. 2012, 7, 179-194.
  • 14. Gao C., Ma Q., Zhao L., Zhang J., Ji C.: Effect of Dietary Phytase Transgenic Corn on Physiological Characteristics and the Fate of Recombinant Plant DNA in Laying Hens. Asian Australas. J. Anim. Sci. 2014, 27, 77-82.
  • 15. Guan Z. J., Guo B., Huo Y. L., Guan Z. P., Dai J. K., Wei Y. H.: Recent advances and safety issues of transgenic plant-derived vaccines. Appl. Microbiol. Biotechnol. 2013, 97, 2817-2840.
  • 16. Guerrero-Andrade O., Loza-Rubio E., Olivera-Flores T., Fehérvári-Bone T., Gómez-Lim M. A.: Expression of the Newcastle disease virus fusion protein in transgenic maize and immunological studies. Transgenic Res. 2006, 15, 455-463.
  • 17. Hahn B. S., Jeon I. S., Jung Y. J., Kim J. B., Park J. S., Ha S. H., Kim K. H., Kim H. M., Yang J. S., Kim Y. H.: Expression of hemagglutinin-neuraminidase protein of Newcastle disease virus in transgenic tobacco. Plant Biotechnol. Rep. 2007, 1, 85-92.
  • 18. Hill B. E., Sutton A. L., Richert B. T.: Effects of low-phytic acid corn, low-phytic acid soybean meal, and phytase on nutrient digestibility and excretion in growing pigs. J. Anim. Sci. 2009, 87, 1518-1527.
  • 19. Hong C. Y., Cheng K. J., Tseng T. H., Wang C. S., Liu L. F., Yu S. M.: Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res. 2004, 13, 29-39.
  • 20. Huang L. K., Liao S. C., Chang C. C., Liu H. J.: Expression of avian reovirus sigmaC protein in transgenic plants. J. Virol. Methods 2006, 134, 217-222.
  • 21. James C.: Global Status of Commercialized Biotech/GM Crops: 2013, Executive Summary. ISAAA Briefs, 2013, 46.
  • 22. Joensuu J., Niklander-Teeri V., Brandle J. E.: Transgenic plants for animal health: plant-made vaccine antigens for animal infectious disease control. Phytochem. Rev. 2008, 7, 553-577.
  • 23. Kang T. J., Seo J. E., Kim D. H., Kim T. G., Jang Y. S., Yang M. S.: Cloning and sequence analysis of the Korean strain of spike gene of porcine epidemic diarrhea virus and expression of its neutralizing epitope in plants. Protein Expr. Purif. 2005, 41, 378-383.
  • 24. Kim S., Kim Y. O., Lee Y., Choi I., Joshi C. P., Lee K., Bae H. J.: The transgenic poplar as an efficient bioreactor system for the production of xylanase. Biosci. Biotechnol. Biochem. 2012, 76, 1140-1145.
  • 25. Kim Y. S., Kang T. J., Jang Y. S., Yang M. S.: Expression of neutralizing epitope of porcine epidemic diarrhea virus in potato plants. Plant Cell Tiss. Org. Cult. 2005, 82, 125-130.
  • 26. Lamphear B. J., Streatfield S. J., Jilka J. M., Brooks C. A., Barker D. K., Turner D. D., Delaney D. E., Garcia M., Wiggins B., Woodard S. L., Hood E. E., Tizard I. R., Lawhorn B., Howard J. A.: Delivery of subunit vaccines in maize seed. J. Control. Release. 2002, 85, 169-180.
  • 27. Lee B. D., Kim D. J., Leet S. J.: Nutritive and economic values of high oil corn in layer diet. Poultry Sci. 2001, 80, 1527-1534.
  • 28. Li J. T., Fei L., Mou Z. R., Wei J., Tang Y., He H. Y., Wang L., Wu Y. Z.: Immunogenicity of a plant-derived edible rotavirus subunit vaccine transformed over fifty generations. Virology 2006, 356, 171-178.
  • 29. Lucas D. M., Taylor M. L., Hartnell G. F., Nemeth M. A., Glenn K. C., Davis S. W.: Broiler performance and carcass characteristics when fed diets containing lysine maize (LY038 or LY038 x MON 810), control, or conventional reference maize. Poultry Sci. 2007, 86, 2152-2161.
  • 30. Mason H. S., Lam D. M., Arntzen C. J.: Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA 1992, 89, 11745-11749.
  • 31. McNaughton J., Roberts M., Smith B., Rice D., Hinds M., Sanders C., Layton R., Lamb I., Delaney B.: Comparison of broiler performance when fed diets containing event DP-3O5423-1, nontransgenic near-isoline control, or commercial reference soybean meal, hulls, and oil. Poultry Sci. 2008, 87, 2549-2561.
  • 32. Nicolia A., Manzo A., Veronesi F., Rosellini D.: An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol. 2014, 34, 77-88.
  • 33. Nyannor E. K., Adeola O.: Corn expressing an Escherichia coli-derived phytase gene: comparative evaluation study in broiler chicks. Poultry Sci. 2008, 87, 2015-2022.
  • 34. Nyannor E. K., Williams P., Bedford M. R., Adeola O.: Corn expressing an Escherichia coli-derived phytase gene: a proof-of-concept nutritional study in pigs. J. Anim. Sci. 2007, 85, 1946-1952.
  • 35. Oszvald M., Kang T. J., Tomoskozi S., Tamas C., Tamas L., Kim T. G., Yang M. S.: Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat labile enterotoxin in rice endosperm. Mol. Biotechnol. 2007, 35, 215-223.
  • 36. Pan L., Zhang Y., Wang Y., Wang B., Wang W., Fang Y., Jiang S., Lv J., Wang W., Sun Y., Xie Q.: Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs. Vet. Immunol. Immunopathol. 2008, 121, 83-90.
  • 37. Parsons C. M., Zhang Y., Araba M.: Availability of amino acids in high-oil corn. Poultry Sci. 1998, 77, 1016-1019.
  • 38. Perez Filgueira D. M., Zamorano P. I., Dominguez M. G., Taboga O., Del Medico Zajac M. P., Puntel M., Romera S. A., Morris T. J., Borca M. V., Sadir A. M.: Bovine herpes virus gD protein produced in plants using a recombinant tobacco mosaic virus (TMV) vector possesses authentic antigenicity. Vaccine. 2003, 21, 4201-4209.
  • 39. Powers W. J., Fritz E. R., Fehr W., Angel R.: Total and water-soluble phosphorus excretion from swine fed low-phytate soybeans. J. Anim. Sci. 2006, 84, 1907-1915.
  • 40. Santi L., Giritch A., Roy C. J., Marillonnet S., Klimyuk V., Gleba Y., Webb R., Arntzen C. J., Mason H. S.: Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system. Proc. Natl. Acad. Sci. USA 2006, 103, 861-866.
  • 41. Seralini G. E., Clair E., Mesnage R., Gress S., Defarge N., Malatesta M., Hennequin D., Vendomois J. S. de: Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food Chem Toxicol. 2012, 50, 4221-4231.
  • 42. Sieradzki Z., Mazur M., Kwiatek K., Świątkiewicz S., Świątkiewicz M., Koreleski J., Hanczakowska E., Arczewska-Włosek A., Goldsztejn M.: Assessing the possibility of genetically modified DNA transfer from GM feed to broiler, laying hen, pig and calf tissues. Pol. J. Vet. Sci. 2013, 16, 435-441.
  • 43. Snell C., Bernheim A., Berge J. B., Kuntz M., Pascal G., Paris A., Ricroch A. E.: Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review. Food Chem. Toxicol. 2012, 50, 1134-1148.
  • 44. Spencer J. D., Allee G. L., Sauber T. E.: Growing-finishing performance and carcass characteristics of pigs fed normal and genetically modified low-phytate corn. J. Anim. Sci. 2000, 78, 1529-1536.
  • 45. Spencer J. D., Allee G. L., Sauber T. E.: Phosphorus bioavailability and digestibility of normal and genetically modified low-phytate corn for pigs. J. Anim. Sci. 2000, 78, 675-681.
  • 46. Streatfield S. J., Jilka J. M., Hood E. E., Turner D. D., Bailey M. R., Mayor J. M., Woodard S. L., Beifuss K. K., Horn M. E., Delaney D. E., Tizard I. R., Howard J. A.: Plant-based vaccines: unique advantages. Vaccine. 2001, 19, 2742-2748.
  • 47. Świątkiewicz M., Hanczakowa E., Twardowska M., Mazur M., Kwiatek K., Kozaczyński W., Świątkiewicz S., Sieradzki Z.: Effect of genetically modified feeds on fattening results and transfer of transgenic DNA to swine tissues. Bull. Vet. Inst. Pulawy 2011, 55, 121-125.
  • 48. Świątkiewicz S., Koreleski J., Arczewska-Włosek A., Świątkiewicz M., Twardowska M., Markowski J., Mazur M., Sieradzki Z., Kwiatek K.: Detection of transgenic DNA from Bt maize and herbicide tolerant soybean meal in tissues, eggs and digestive tract content of laying hens fed diets containing genetically modified plants. Ann. Anim. Sci. 2011, 11, 413-424.
  • 49. Ufaz S., Galili G.: Improving the Content of Essential Amino Acids in Crop Plants: Goals and Opportunities. Plant Physiol. 2008, 147, 954-961.
  • 50. Veum T. L., Ledoux D. R., Raboy V.: Low-phytate barley cultivars improve the utilization of phosphorus, calcium, nitrogen, energy, and dry matter in diets fed to young swine. J. Anim. Sci. 2007, 85, 961-971.
  • 51. Wieland W. H., Lammers A., Schots A., Orzaez D. V.: Plant expression of chicken secretory antibodies derived from combinatorial libraries. J. Biotechnol. 2006, 122, 382-391.
  • 52. Wigdorovitz A., Carrillo C., Dus Santos M. J., Trono K., Peralta A., Gomez M. C., Rios R. D., Franzone P. M., Sadir A. M., Escribano J. M., Borca M. V.: Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1. Virology. 1999, 255, 347-353.
  • 53. Wigdorovitz A., Mozgovoj M., Santos M. J., Parreno V., Gomez C., Perez Filgueira D. M., Trono K. G., Rios R. D., Franzone P. M., Fernandez F., Carrillo C., Babiuk L. A., Escribano J. M., Borca M. V.: Protective lactogenic immunity conferred by an edible peptide vaccine to bovine rotavirus produced in transgenic plants. J. Gen. Virol. 2004, 85, 1825-1832.
  • 54. Wu H., Singh N. K., Locy R. D., Scissum-Gunn K., Giambrone J. J.: Immunization of chickens with VP2 protein of infectious bursal disease virus expressed in Arabidopsis thaliana. Avian. Dis. 2004, 48, 663-668.
  • 55. Wu J. X., Yu L., Li L., Hu J. Q., Zhou J. Y., Zhou X. P.: Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnology Journal 2007, 5, 570-578.
  • 56. Xu J., Dolan M. C., Medrano G., Cramer C. L., Weathers P. J.: Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol. Adv. 2012, 30, 1171-1184.
  • 57. Yang C. D., Liao J. T., Lai C. Y., Jong M. H., Liang C. M., Lin Y. L., Lin N. S., Hsu Y. H., Liang S. M.: Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes. BMC Biotechnol. 2007, 7, 62.
  • 58. Yang Z. Q., Liu Q. Q., Pan Z. M., Yu H. X., Jiao X. A.: Expression of the fusion glycoprotein of Newcastle disease virus in transgenic rice and its immunogenicity in mice. Vaccine. 2007, 25, 591-598.
  • 59. Zhang Z. B., Kornegay E. T., Radcliffe J. S., Wilson J. H., Veit H. P.: Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. J. Anim. Sci. 2000, 78, 2868-2878.
  • 60. Zhou J. Y., Wu J. X., Cheng L. Q., Zheng X. J., Gong H., Shuang S. B., Zhou E. M.: Expression of immunogenic S1 glycoprotein of infectious bronchitis virus in transgenic potatoes. J. Virol. 2003, 77, 9090-9093.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e9598e08-cfa1-436b-bd32-823eb20c8e15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.