PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 59 | 4 |

Tytuł artykułu

Influence of Epilobium angustifolium extract on 5alpha-reductase type 2 and MAPK3 kinase gene expression in rats prostates

Treść / Zawartość

Warianty tytułu

PL
Wpływ wyciągu z Epilobium angustifolium na ekspresję genów 5alfa-reduktazy typu 2 oraz kinazy MAPK3 w szczurzych prostatach

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to investigate the influence of standardized Epilobium angustifolium L. extract [100 mg/kg/day, p.o.] on the expression level of 5α-reductase type 2 (Srd5ar2) mRNA and Mapk3 mRNA a representative of non-genomic xenobiotics signaling pathway. It was shown that plant extract from the E. angustifolium showed a slight tendency to reduce prostate weight in hormonally induced animals (p>0.05) and in testosterone induced animals receiving both, extract and finasteride (p<0.05). Finasteride in rats induced by testosterone caused a smaller decrease in the level of mRNA 5α-steroid reductase 2 (SRd5ar2), than in rats treated with the hormone and studied plant extracts. In general, an increase in the amount of MAPK3 mRNAs in testosterone-induced groups of rats receiving tested plant extract with or without finasteride was observed, while the expression of type 2 5α-steroid reductase decreased (p<0.05). Further experimental studies should be performed in order to understand the molecular basis of interactions, the efficacy and safety of tested plant extracts.
PL
Celem pracy było zbadanie wpływu standaryzowanego ekstraktu z ziela Epilobium angustifolium L. [100 mg/kg/dzień, p.o.] na poziom ekspresji mRNA 5α-reduktazy typu 2 (SRd5ar2) oraz mRNA kinazy MAPK3 – przedstawiciela androgenozależnego, nie-genomowego szlaku sygnalizacji komórkowej. W zastosowanym modelu eksperymentalnym wyciąg z z E. angustifolium wykazał statystycznie nieistotną, niewielką tendencję do zmniejszania masy prostat u zwierząt indukowanych hormonalnie (p>0,05) oraz u szczurów indukowanych testosteronem, otrzymujących zarówno ekstrakt, jak i finasteryd (p<0,05). Finasteryd u szczurów otrzymujących testosteron spowodował mniejsze, aniżeli zakładano, obniżenie poziomu mRNA 5α-reduktazy typu 2 (SRd5ar2), niż u szczurów, którym podano hormon i badany wyciąg (p <0.05). Stwierdziliśmy ponadto, zwiększenie ilości mRNA kinazy MAPK3 u szczurów indukowanych testosteronem otrzymujących badany ekstrakt, wraz z finasterydem lub bez niego, podczas gdy ekspresja reduktazy w tych grupach uległa zwiększeniu (p <0,05). Należy przeprowadzić dalsze badania eksperymentalne w celu zrozumienia molekularnych podstaw oddziaływań, skuteczności i bezpieczeństwa badanych ekstraktów roślinnych.

Wydawca

-

Czasopismo

Rocznik

Tom

59

Numer

4

Opis fizyczny

p.72-85,fig.,ref.

Twórcy

autor
  • Department of Pharmacology and Experimental Biology, Institute of Natural Fibres and Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
  • Department of Quality Control of Medicinal Products and Dietary Supplements, Institute of Natural Fibres and Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
  • Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Sw.Marii Magdaleny 14, 61-861 Poznan, Poland
  • Department of Quality Control of Medicinal Products and Dietary Supplements, Institute of Natural Fibres and Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
autor
  • Department of Quality Control of Medicinal Products and Dietary Supplements, Institute of Natural Fibres and Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
  • Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Sw.Marii Magdaleny 14, 61-861 Poznan, Poland
  • Department of Pharmacology and Experimental Biology, Institute of Natural Fibres and Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
  • Chair and Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
autor
  • Department of Quality Control of Medicinal Products and Dietary Supplements, Institute of Natural Fibres and Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
  • Department of General Pharmacology and Pharmacoeconomy, Pomeranian Medical University, Zolnierska 48, 70-204 Szczecin, Poland
  • Department of Quality Control of Medicinal Products and Dietary Supplements, Institute of Natural Fibres and Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
  • Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Sw.Marii Magdaleny 14, 61-861 Poznan, Poland

Bibliografia

  • 1. Elterman DS, Lawrentschuk N, Guns E, Hersey K, Adomat H, Wood CA, Fleshner N. Investigating contamination of phytotherapy products for benign prostatic hyperplasia with α-blockers and 5α-reductase inhibitors. J Urol 2010; 183(5):2085-9.
  • 2. Yamaguchi O. Latest treatment for lower urinary tract dysfunction: therapeutic agents and mechanismof action. Int J Urol 2013; 20(1):28-39.
  • 3. Lowe FC, Fagelman E. Phytotherapy in the treatment of benign prostatic hyperplasia. Curr Opin Urol 2002; 12(1):15-8.
  • 4. Von Löw EC, Perabo FG, Siener R, Müller SC. Review. Facts and fiction of phytotherapy for prostate cancer: a critical assessment of preclinical and clinical data. In Vivo 2007; 21(2):189-204.
  • 5. Dedhia RC, McVary KT. Phytotherapy for lower urinary tract symptoms secondary to benign prostatic hyperplasia. J Urol 2008; 179(6):2119-25.PDR for Herbal Medicines. 4th ed. Thompson Healtcare Inc., USA 2007:903-4.
  • 6. Van-Hellemont J. Compedium de Phytotherapie. Association Pharmaceutique, Brussels 1986.
  • 7. Wichtl M. Herbal Drug and Phytopharmaceuticals, 3th ed. Medpharm GmbH, Stuttgart 2004.
  • 8. Hevesi BT, Houghton PJ, Habtemariam S, Kery A. Antioxidant and anti-inflammatory effect of Epilobium parviflorum. Schreb Phytother Res 2009; 23(5):719-24.
  • 9. Kujawski R, Bartkowiak-Wieczorek J, Ożarowski M, Bogacz A, Cichocka J, Karasiewicz M, Mrozikiewicz PM. Studies on phytochemical profile of plant materials and extracts derived from aerial parts of Epilobium sp. – a minireview. Herba Pol 2011; 57(4):25-34.
  • 10. Stolarczyk M, Naruszewicz M, Kiss AK. Extracts from Epilobium sp. herbs induce apoptosis in human hormone-dependent prostate cancer cells by activating the mitochondrial pathway. J Pharm Pharmacol 2013; 65(7):1044-54.
  • 11. Hevesi TB, Blazics B, Kery A. Polyphenol composition and antioxidant capacity of Epilobium species. J Pharm Biomed Anal 2009; 15;49(1):26-31.
  • 12. Bazylko A, Kiss AK, Kowalski J. High-performance thin-layer chromatography method for quantitative determination of oenothein B and quercetin glucuronide in aqueous extract of Epilobii angustifolii herba. J Chromatogr A 2007; 30;1173(1-2):146-50.
  • 13. Kiss A, Kowalski J, Melzig MF. Effect of Epilobium angustifolium L. extracts and polyphenols on cell proliferation and neutral endopeptidase activity in selected cell lines. Pharmazie 2006; 61(1):66-9.
  • 14. Granica S, Bazylko A, Kiss AK. Determination of macrocyclic ellagitannin oenothein B in plant materials by HPLC-DAD-MS: method development and validation. Phytochem Anal 2012; 23(6):582-7.
  • 15. Hiermann A. Bucar F. Studies of Epilobium angustifolium extracts on growth of accessory sexual organs in rats. J Ethnopharmacol 1997; 55(3):179-83.
  • 16. Vitalone A, Bordi F, Baldazzi C, Mazzanti G, Saso L, Tita B. Anti-proliferative effect on a prostatic epithelial cell line (PZ-HPV-7) by Epilobium angustifolium L. Farmaco 2001; 56(5-7):483-9. 83 Influence of Epilobium angustifolium extract on 5α-reductase and MAPK3 kinase gene expression in rats prostates Vol. 59 No. 4 2013
  • 17. Vitalone A, McColl J, Thome D, Costa LG, Tita B. Characterization of the effect of Epilobium extracts on human cell proliferation. Pharmacology 2003; 69(2):79-87.
  • 18. Ramstead AG, Schepetkin IA, Quinn MT, Jutila MA. Oenothein B, a cyclic dimeric ellagitannin isolated from Epilobium angustifolium, enhances IFNγ production by lymphocytes. PLoS One 2012; 7(11):e50546.
  • 19. Krakurt S, Semiz A, Celik G, Gencler-Ozkan AM. Sen A. Adali O. Epilobium hirsutum alters xenobiotic metabolizing CYP1A1, CYP2E1, NQO1 and GPx activities, mRNA and protein levels in rats. Pharm Biol 2013; 51(5):650-8.
  • 20. Stolarczyk M, Piwowarski JP, Granica S, Stefańska J, Naruszewicz M, Kiss AK. Extracts from Epilobium sp. Herbs, Their Components and Gut Microbiota Metabolites of Epilobium Ellagitannins, Urolithins, Inhibit Hormone-Dependent Prostate Cancer Cells-(LNCaP) Proliferation and PSA Secretion. Phytother Res 2013; doi:10.1002.
  • 21. Coulson S, Rao A, Beck SL, Steels E, Gramotnev H, Vitetta L. A phase II randomised double-blind lacebo-controlled clinical trial investigating the efficacy and safety of ProstateEZE Max: a herbalmedicine preparation for the management of symptoms of benign prostatic hypertrophy. Complement Ther Med 2013; 21(3):172-9.
  • 22. Kujawski R, Bogacz A, Derebecka-Hołysz N, Cichocka J, Kujawski J, Mikołajczak PŁ, Bobkiewicz- Kozłowska T, Grześkowiak E, Krajewska-Patan A, Czerny B, Mrozikiewicz PM. Medicinal plants from Epilobium genus – biological and pharmacological properties. Herba Pol 2010; 56(1):66-82.
  • 23. Lesuisse D, Berjonneau J, Ciot C, Devaux P, Doucet B, Gourvest JF, Khemis B, Lang C, Legrand R, Lowinski M, Maquin P, Parent A, Schoot B, Teutsch G. Determination of oenothein B as the active 5-α-reductaseinhibiting principle of the folk medicine Epilobium parviflorum. J Nat Prod 1996; 59(5):490-2.
  • 24. Ducrey B, Marston A, Göhring S, Hartmann RW, Hostettmann K. Inhibition of 5 α-reductase and aromatase by the ellagitannins oenothein A and oenothein B from Epilobium species. Planta Med 1997; 63(2):111-4.
  • 25. Kujawski R, Mrozikiewicz PM, Bogacz A, Cichocka J, Mikołajczak PŁ, Czerny B, Bobkiewicz-Kozłowska T, Grześkowiak E. Influence of standardized extract of Epilobium angustifolium on estrogen receptor α and β expression in in vivo model. Ginekol Pol 2010; 81(8):600-605.
  • 26. Kiss A, Kowalski J, Melzig MF. Compounds from Epilobium angustifolium inhibit the specific metallopeptidases ACE, NEP and APN. Planta Med 2004;70(10):919-23.
  • 27. Foradori CD, Werner SB, Sandau US, Clapp TR, Handa RJ. Activation of the androgen receptor alters the intracellular calcium response to glutamate in primary hippocampal neurons and modulates sarco/ endoplasmic reticulum calcium ATPase 2 transcription. Neuroscience 2007; 149:155–164.
  • 28. Benett NC, Gardiner RA, Hooper JD, Johnson DW, Gobe GC. Molecular cell biology of androgen receptor signalling. Int J Biochem Cell Biol 2010; 42(6):813-27.
  • 29. Linja MJ, Porkka K, Kang Z, Savinainen KJ, Janne OA, Tamela TL, Vessella RL, Palvimo JJ, Visakorpi T. Expression of androgen receptor coregulators in prostate cancer. Clin Cancer Res 2004; 10(3):1032-40.
  • 30. Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 2007; 120(4):719-33.
  • 31. Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation 2011; 82(4-5):84-99.
  • 32. Baron S, Manin M, Beaudoin C, Leotoing L, Communal Y, Veyssiere G. Androgen receptor mediates nongenomic activation of phosphatidylinositol 3-OH kinase in androgen-sensitive epithelial cells. J Biol Chem 2004; 279(15):14579–86.
  • 33. Li J, Al-Azzawi F. Mechanism of androgen receptor action. Maturitas 2009; 63(2):142–8. 34. Iehlé C, Délos S, Guirou O. et al. Human prostatic steroid 5 α-reductase isoforms-a comparative study of selective inhibitors. J Steroid Biochem Mol Biol 1995; 54:273–279.
  • 35. Carson CIII, Rittmaster R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urolog. 2003; 61(Suppl. 1):2–7.
  • 36. Gravas S, Oelke M. Current status of 5α-reductase inhibitors in the management of lower urinary tract symptoms and BPH. World J Urol 2010; 28(1):9-15.
  • 37. Kosowicz J, Miskowiak B, Konwerska A, Belloni AS, Nussdorfer GG, Malendowicz LK. Pneumadin in the rat ventral prostate and its hormonal regulation. Hormon. Metab. Res 2004; 36:78-81.
  • 38. Schepetkin IA, Kirpotina LN, Jakiw L, Khlebnikov AI, Blaskovich CL, Jutila MA, Quinn MT. Immunomodulatory activity of oenothein B isolated from Epilobium angustifolium. J Immunol 2009; 183(10):6754-66. 84 Kujawski, J. Bartkowiak-Wieczorek, M. Karasiewicz, A. Bogacz, PŁ. Mikołajczak, B. Czerny, PM. Mrozikiewicz
  • 39. Kiss AK, Bazylko A, Filipek A, Granica S, Jaszewska E, Kiarszys U, Kośmider A, Piwowarski J. OenotheinB’s contribution to the anti-inflammatory and antioxidant activity of Epilobium sp. Phytomedicine 2011; 18(7):557-60.
  • 40. Azzolina B, Ellsworth K, Andersson S, Geissler W, Bull HG. Inhibition of rat α-reductases by finasteride: evidence for isozyme differences in the mechanism of inhibition. J Steroid Biochem Mol Biol 1997;61:55–64.
  • 41. Kang DI, Chung JL. Current status of 5α-reductase inhibitors in prostate disease management. Korean J Urol 2013; 54(4):213-9.
  • 42. Gisleskog PO, Hermann D, Hammarlund-Udenaes M, Karlsson MO. The pharmacokinetic modelling of GI198745 (dutasteride), a compound with parallel linear and nonlinear elimination. Br J Clin Pharmacol 1999; 47:53–8.
  • 43. Stuart JD, Lee FW, Simpson Noel D, Kadwell SH, Overton LK, Hoffman CR, Kost TA, Tippin TK, YeagerRL, Batchelor KW, Bramson HN. Pharmacokinetic parameters and mechanisms of inhibition of rat type 1 and 2 steroid 5α-reductases: determinants for different in vivo activities of GI198745 and finasteride in the rat. Biochem Pharmacol 2001; 62:933–42.
  • 44. Suzuki R, Satoh H, Ohtani H, Hori S, Sawada Y. Saturable binding of finasteride to steroid 5α-reductase as determinant of nonlinear pharmacokinetics. Drug Metab Pharmacokinet 2010; 25:208–13.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e90ce632-81f3-445f-aa5d-98a35948c383
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.