PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 1 |

Tytuł artykułu

Macro- and trace-elements accumulation in Typha angustifolia L. and Typha latifolia L. organs and their use in bioindication

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The content of nutrients and heavy metals was indicated in different parts of Typha angustifolia and Typha latifolia, collected in lakes in western Poland. Three groups of metals were indicated, depending on the place of their accumulation. The cattail species studied differed significantly with their Cu, Pb, and Cd content, but were characterized by the same accumulation pattern in the leaves: Mn > Fe > Zn > Cu > Pb > Ni > Cd, and in the rhizomes: Fe > Mn > Zn > Pb > Cu > Ni > Cd. The statistical results of this research suggest the possibility of using Typha latifolia in the biological analysis of contamination by Mn.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

1

Opis fizyczny

p.183-190,fig.,ref.

Twórcy

autor
  • Department of Ecology, Biogeochemistry and Environmental Protection, Institute of Plant Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
autor
  • School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
autor
  • Department of Ecology, Biogeochemistry and Environmental Protection, Institute of Plant Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
autor
  • Department of Ecology, Biogeochemistry and Environmental Protection, Institute of Plant Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland

Bibliografia

  • 1. KURILENKO V.V., OSMOLOVSKAYA N.G. Ecological Biogeochemical Role of Macrophytes in Aquatic Ecosystems of Urbanized Territories (An Example of Small Bodies of St. Petersburg). Russ. J. Ecol+ 37, (3), 147, 2006.
  • 2. NOGUEIRA F., DE ASSIS ESTEVES F., PRAST A.E. Nitrogen and phosphorous concentration of different structures of the aquatic macrophytes Eichhornia azurea Kunth and Scirpus cubensis Poepp&Kunth in relation to water level variation in Lagoa Infernao (Sao Paulo, Brazil). Hydrobiologia 328, 199, 1996.
  • 3. WEIS J.S., WEIS P. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ. Int. 30, 685, 2004.
  • 4. ROMERO M., ONAINDIA M. Fullgrown aquatic macrophytes as indicator of river water quality in the northwest Iberian Peninsula. Ann. Bot. Fenn. 32, 91, 1995.
  • 5. AKSOY A., DEMIREZEN D., DUMAN F. Bioaccumulation, Detection and Analyses of Heavy Metal Pollution in Sultan Marsh and its Environment. Water Air Soil Poll. 164, 241, 2005.
  • 6. BALDANTONI D., MAISTO G., BARTOLI G., ALFAMI A. Analyses of three native aquatic plant species to assess spatial gradients of lake trace element contamination. Aquat. Bot. 83, 48, 2005.
  • 7. CHOIŃSKI A. Catalogue of Polish lakes, third part: Wielkopolsko-Kujawskie Lakeland, Wydawnictwo Naukowe UAM: Poznań, 1995 [In Polish].
  • 8. OLSEN S., SOMMERS L.E. Phosphorous. In: Page A.L. (Ed.) Methods of soil analysis, Part 2; American Society of Agronomy; Medison. WI, pp. 414-416, 1982.
  • 9. KNUDSEN D., PETERSON G.A. Lithium, sodium and potassium. In: Page A.L. (Ed.) Methods of soil analysis, Part 2. American Society of Agronomy; Medison WI, pp. 414-416, 1982.
  • 10. ZAR H. Biostatistical Analysis. Prentice Hall, Upper Saddle River, 1999.
  • 11. SOKAL R.R., ROHFL F.J. Biometry: The Principles and Practice of Statistics in Biological Research, W.H. Freeman: New York, 1995.
  • 12. PARKER R.E. Introductory Statistics for Biology, Edward Arnold Publishers Ltd.: London, 1983.
  • 13. StatSoft Inc., STATISTICA for Windows (data analysis software system), version 9, www.statsoft.com, 2008.
  • 14. GROSBOIS C.A., HOROWITZ A.J., SMITH J.J., ELRICK K.A. The effect of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d’Alene, Idaho, USA. Part III. Downstream effects: the Spokane River Basin. Hydrol. Process. 15, 855, 2001.
  • 15. WOITKE P., WELLMITZ J., HELM D., KUBE P., LEPOM P., LITHERATY P. Analysis and assessment of heavy metal pollution in suspended soils and sediments of the River Dunabe. Chemosphere 51, 633, 2003.
  • 16. MARKERT B. Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio 103, 1, 1992.
  • 17. KLINK A. Content of selected chemicals in two protected macrophytes: Nymphaea alba L. and Nuphar lutea (L.) Sibith. & Sm. in reletion to site chemistry. Polish Journal of Ecology 52, (2), 229, 2004.
  • 18. KABATA-PENDIAS A., PENDIAS H. Biogeochemistry of Trace Elements. Wydawn. Nauk. PWN: Warszawa, 1993 [In Polish].
  • 19. DENG H., YE Z.H., WONG M.H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ. Pollut. 132, 29, 2004.
  • 20. SAMECKA-CYMERMAN A., KOLON K., STANKIEWICZ A., KASZEWSKA J., MRÓZ L., KEMPERS A.J. Rhizomes and fronds of Athyrium filix-femina as possible bioindicators of chemical elements from soils over different parent materials in southwest Poland. Ecol. Indic. 11, 1105, 2011.
  • 21. HOZHINA E.I., KHRAMOV A.A., GERASIMOV P.A., KUMARKOV A.A. Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. J. Geochem. Explor. 74, 153, 2001.
  • 22. BALDANTONI D., LIGRONE R., ALFANI A. Macro- and trace-element concentrations in leaves and roots of Phragmites australis in volcanic lake in Southern Italy. J. Geochem. Explor. 101, 166, 2009.
  • 23. VARDANYAN L.G., INGOLE B.S. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environ. Int. 32, 208, 2006.
  • 24. SHARMA P., ASAEDA T., MANATUNGE J., FUJINO T. Nutrient cycling in a natural stand of Typha angustifolia. J. Freshwater Ecol. 21, 431, 2006.
  • 25. BALDANTONI D., ALFAMI A., TOMMASI P.D., BARTOLI G., VIRZO DE SANTO A. Assessment of macro and microelement accumulation capability of two aquatic plants, Environ. Pollut. 130, 149, 2004.
  • 26. LETACHOWICZ B., KRAWCZYK J., KLINK A. Accumulation of Heavy Metals in Organs of Typha latifolia L. Pol. J. Environ. Stud. 15, (2A), 407, 2006.
  • 27. DEMIREZEN D., AKSOY A. Common hydrophytes as bioindicators of iron and manganese pollutions. Ecol. Indic. 6, 388, 2006.
  • 28. SASMAZ A., OBEK E., HASAR H. The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecol. Eng. 33, (3-4), 78, 2008.
  • 29. JONES K.C. Gold, silver and other elements in aquatic bryophytes from mineralized area of North Wales UK, J. Geochem. Explor., 24, 237, 1985.
  • 30. AKSOY A., DUMAN F., SEZEN G. Heavy Metal Accumulation and Distribution in Narrow-Leaved Cattail (Typha angustifolia) and Common Reed (Phragmites australis). J. Freshwater Ecol. 20, (4), 783, 2005.
  • 31. DEMIREZEN D., AKSOY A. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere 56, 685, 2004.
  • 32. MIKRYAKOVA T.F. Seasonal Distribution of Chemical Elements in Alisma plantago-aquatica L. and Sagittaria sagittifolia L. Russ. J. Ecol+ 32, (4), 284, 2001.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e8e7906c-de65-4e67-9336-1d2563a824f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.