Analiza porównawcza wybranych kształtów bieżnika pneumatycznego mechanizmu jezdnego ze względu na propagację nacisków w podłożu z zastosowaniem metody wagowo korelacyjnej

Włodzimierz Malesa

Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry Department of Mechanical Systems Engineering and Automatization Adress: ul. Łukasiewicza 17, 09-400 Płock, e-mail: polsw@pw.plock.pl

Streszczenie. W opracowaniu przedstawiono zastosowanie systemów CAD i metody elementów skończonych (MES), w analizie porównawczej propagacji nacisków w glebie pneumatycznych mechanizmów jezdnych, o różnym kształcie protektora. Wykonano model rozkładu nacisków powierzchniowych oraz ich propagacji w podłożu. Przeprowadzono optymalizację doboru kształtu bieżnika ze względu na minimalizację nacisków w glebie na wybranych głębokościach pomiarowych. Zadanie polioptymalizacji rozwiązano przy pomocy metody wagowo--korelacyjnej.

Slowa kluczowe: oddziaływanie opony na glebę, komputerowo wspomagane projektowanie, metoda elementów skończonych, propagacja nacisków w glebie, poliptymalizacja, metoda wagowo-korelacyjna.

WPROWADZENIE

Kształt bieżnika pneumatycznego mechanizmu jezdnego ma wpływ na wielkość nacisków jednostkowych występujących na powierzchni kontaktu opony z podłożem. Ma to bezpośredni związek ze zjawiskiem ich rozprzestrzeniania się w głąb ośrodka, po którym przemieszcza się układ jezdny [2, 3, 4, 6, 7, 19, 21]. Umiejętność określenia wpływu kształtu protektora na rozkład propagacji nacisków w podłożu umożliwia racjonalny dobór parametrów konstrukcyjnych elementów jezdnych (m.in. kształt opon) ze względu na minimalizację wartości nacisków lub też ograniczenie zjawiska przekraczania nośności granicznej (maszyny budowlane) [8, 9, 10, 17, 20].

Celem niniejszego opracowania było zastosowanie nowoczesnych metod modelowania cyfrowego z wykorzystaniem systemów CAD, metody elementów skończonych oraz metody wagowo-korelacyjnej (polioptymalizacja) w procesie określenia wpływu kształtu i geometrii bieżnika wybranej opony na propagację nacisków w podłożu. Realizacja ww. problematyki z zastosowaniem MES oraz metod polioptymalizacji ma istotne znaczenie ze względów ekonomicznych, gdyż badania laboratoryjno-polowe wymagają poniesienia wysokich kosztów finansowych, ze względu na cenę urządzeń pomiarowych oraz nakłady związane z przygotowaniem terenu. Ponadto zaproponowana metodyka badań eliminuje problem sezonowości, co bezpośrednio przyczynia się do skrócenia czasu niezbędnego do wykonania analiz [5].

MODELE CYFROWE OPON

Wykonano osiem modeli cyfrowych opon na bazie rzeczywistej konstrukcji 14.9-R28/8PR Stomil Olsztyn [14], stosowanej w maszynach rolniczych. Proces modelowania cyfrowego zrealizowano z zastosowaniem systemu Inventor v13 firmy Autodesk. Każdy z wariantów opony zawierał wszystkie cechy geometryczne i materiałowe odpowiadające rzeczywistej oponie bazowej. Warianty kształtu bieżnika zostały opracowane na podstawie istniejących konstrukcji spotykanych w maszynach roboczych.

Tabela 1. Modele cyfrowe badanych opon.Table 1. Digital models of tires

V1 – protektor łukowy	0	V5 – protektor prostokątny – wariant A	0
V2 – protektor daszkowy	O	V6 – protektor prostokątny – wariant B	C

MODEL CYFROWY KONTAKTU OPONY Z PODŁOŻEM

Opracowano cyfrowy model kontaktu opony z podłożem. W miejscach gdzie spodziewano się naturalnego styku elementów odkształcalnych wybrano powierzchnie potencjalnego kontaktu pomiędzy powierzchnią czołową wybranych elementów bieżnika opony a górną warstwą gleby. W procesie modelowania wykorzystano metodę powierzchnia do powierzchni (surface-to-surface) [23]. Wyznaczenie strefy kontaktu umożliwiło obliczenie, przy pomocy MES, cyfrowej mapy zawierającej rozkład nacisków powierzchniowych powstających między oponą i glebą oraz geometryczną postać odkształcenia podłoża [12, 13, 18, 24].

Mapa cyfrowa nacisków powstających w strefie kontaktu koło jezdne – gleba została opracowana dla każdego przypadku opony. N rysunku nr 1 przedstawiono mapę cyfrową nacisków dla przykładowej opony (V1), odpowiadającej konstrukcji o oznaczeniu 14.9R28/8PR (wariant V1). Własności mechaniczne podłoża odpowiadały glebie piaszczysto-gliniastej. Wyznaczono maksymalną wartość nacisku w strefie kontaktu dla dwóch przypadków obciążenia koła napędowego, pionowo skierowaną siłą osiową, o wartościach: 10kN i 7kN. W modelu uwzględniono ciśnienie napompowania opony p_=2,25 bara.

Rys. 1. Symulacja komputerowa oddziaływania koła napędowego na podłoże

Fig. 1. Computer simulation of the impact of the drive wheel on the ground

W dalszej kolejności wyznaczono propagację nacisków w głębi ośrodka glebowego.

OBLICZENIA PROPAGACJI NACISKÓW W PODŁOŻU DLA WYKONANYCH MODELI OPON Z ZASTOSOWANIEM MES

Obliczenia MES przeprowadzono dla wszystkich badanych wariantów opon (V1 – V8), z zachowaniem jednolitych warunków brzegowych. Wyniki obliczeń rejestrowano dla czterech głębokości pomiarowych (100 mm, 200 mm, 300mm, 400mm), co odpowiadało procedurze rozmieszczania czujników tensometrycznych na stanowisku laboratoryjnym (kanał glebowy) [14].

Poniżej przedstawiono przykładową mapę rozkładu nacisków w podłożu składowej σ_{yy} w płaszczyźnie prostopadłej do osi jazdy, na której znajduje się oś koła, dla przypadku obciążenia G=10 kN. Wyniki przedstawiono dla modelu opony o skośnej geometrii bieżnika (wariant V3).

Rys. 2. Rozkład naprężeń σ_y – wariant V3, obciążenie G=10 kN **Fig. 2.** Stress distribution σ_y – variant V3, force G=10kN

Na podstawie wyznaczonych za pomocą MES składowych naprężeń (σ_y , τ_{yx} , τ_{yz}) obliczono wartości σ_n , zgodnie z zależnością [22]:

$$\sigma_n = \sqrt{\sigma_y^2 + 3\tau_{yx}^2 + 3\tau_{yz}^2} . \tag{1}$$

WYBÓR OPTYMALNEGO KSZTAŁTU PROTEKTORA ZE WZGLĘDU NA MINIMALIZACJĘ PROPAGACJI NACISKÓW W PODŁOŻU Z ZASTOSOWANIEM METODY WAGOWO-KORELACYJNEJ

W analizowanym przypadku konstrukcji opon określono osiem kryteriów q_j (j=1,..,8) zadania polioptymializacji [15]. Wartość kryterium q_j odpowiadała wielkości wyznaczonych naprężeń σ_n dla głębokości pomiarowych h_j (h₁=100mm, h₂=200mm, h₃=300mm, h₄=400mm) dla obciążeń osiowych G_k (G₁=10kN, G₂=7kN)

Dla każdego wariantu opony przyporządkowano wektor 8 liczb będących wartościami kryteriów ($q_1, q_2, q_3, q_4, q_2, q_4, q_7, q_9$).

W analizowanym zadaniu, w procesie obliczeniowym MES wyznaczono następujące współrzędne punktów: a_{V1} , a_{V2} , a_{V3} , a_{V4} , a_{V6} , a_{V7} , a_{V3} , a_{V8} w przestrzeni kryterialnej (q_1 , q_2 , q_3 , q_4 , q_5 , q_6 , q_7 , q_8).

wyniki obliczeń MES	q ₁ [MPa]	q ₂ [MPa]	q ₃ [MPa]	q 44 [MPa]	q ₅ [MPa]	q ₆ [MPa]	q 77 [MPa]	q ₈ [MPa]
a _{V1}	119,60	86,00	59,20	42,20	83,70	60,20	41,50	29,50
a _{v2}	172,90	132,20	81,50	52,70	120,70	91,90	57,00	36,50
a _{v3}	108,37	88,58	56,11	36,37	72,12	57,56	37,74	25,24
a _{V4}	48,99	116,03	90,00	64,00	36,47	87,04	67,03	48,03
a _{v5}	49,99	122,02	91,00	65,00	30,28	85,01	63,00	45,00
a _{v6}	31,51	108,03	85,02	62,01	34,19	81,02	63,00	45,00
a _{V7}	247,65	192,02	120,61	80,17	302,49	162,05	90,02	57,03
a _{vo}	131,79	111,97	83,37	60,18	93,63	77,70	58,30	42,12

Tabela 2. Współrzędne punktów $(a_{v_1},...,a_{v_8})$ w przestrzeni kryterialnej $(q_1,...,q_8)$ **Table 2.** Coordinates of points $(a_{v_1},...,a_{v_8})$ in the space criterion $(q_1,...,q_8)$

Tabela 3. Znormalizowane wartości współrzędnych punktów $(a_{V_1}^N,...,a_{V_8}^N)$ w przestrzeni kryterialnej $(q_1^N,...,q_8^N)$ **Table 3.** Normalized values of coordinates of points $(a_{V_1}^N,...,a_{V_8}^N)$ in the space criterion $(q_1^N,...,q_8^N)$

wyniki obliczeń MES	q_1^N [MPa]	q ^N [MPa]	q ^N [MPa]	q_4^N [MPa]	q _5^N [MPa]	q_6^N [MPa]	q ^N ₇ [MPa]	q_8^N [MPa]
a_{V1}^N	0,4076	0,0000	0,0479	0,1331	0,1962	0,0253	0,0719	0,1340
a_{V2}^N	0,6542	0,4358	0,3936	0,3728	0,3322	0,3286	0,3684	0,3542
a_{V3}^N	0,3556	0,0243	0,0000	0,0000	0,1537	0,0000	0,0000	0,0000
a_{V4}^N	0,0809	0,2832	0,5254	0,6308	0,0227	0,2821	0,5603	0,7169
a_{V5}^N	0,0855	0,3397	0,5409	0,6537	0,0000	0,2627	0,4832	0,6216
a_{V6}^N	0,0000	0,2078	0,4482	0,5854	0,0144	0,2245	0,4832	0,6216
a_{V7}^N	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
a_{V8}^N	0,4640	0,2450	0,4226	0,5436	0,2327	0,1927	0,3933	0,5310

W dalszej kolejności dokonano zabiegu normalizacji wartości współrzędnych punktów w przestrzeni kryterialnej, zgodnie z następującą zależnością:

$$q_j^N = \frac{q_j - q^{MIN}}{q^{MAX} - q^{MIN}} , \qquad (2)$$

gdzie:

 $q^{MAX} = MAX(q_j(a_{V1}), ..., q_j(a_{V8}))$ $q^{MIN} = MIN(q_j(a_{V1}), ..., q_j(a_{V8}))$

Rozwiązanie zadania polioptymalizacji polegało na wyznaczeniu elementu "najlepszego" poprzez zastosowanie metody wagowo-korelacyjnej.

Rachunek wagowo-korelacyjny jest metodą wartościowania ocechowanych wytworów. Wytwory stanowią zbiór porównywalnych ze sobą układów. Wartościowanie wymaga, by każdy z wytworów (układów) był oznaczony miarami jakości w wybranych kryteriach. Problem polega na tym, że mają one różne wartości w kryteriach cząstkowych [16].

Dla potrzeby zadania wprowadzono następujące oznaczenia:

i=1,..8 – indeks wytworu (analizowany wariant opony),
j=1,..8 – indeks kryterium (obliczone wartości nacisków na wybranych głębokościach pomiarowych dla dwóch przypadków obciążenia (10kN i 7kN).

Wektor ocen *i-tego* wytworu wg *j-tego* kryterium ma następującą postać:

$$\boldsymbol{q}_{j} = \begin{bmatrix} q_{1,j} \\ \vdots \\ q_{i,j} \\ \vdots \\ q_{8,j} \end{bmatrix}.$$
(3)

Macierz wartości cząstkowych dla kryteriów: przyjmuje następująca postać:

$$\boldsymbol{q} = \begin{bmatrix} q_{1,1} & \dots & q_{i,1} & \dots & q_{1,8} \\ \vdots & \dots & \dots & \dots & \vdots \\ q_{i,1} & \dots & q_{i,j} & \dots & q_{i,8} \\ \vdots & \dots & \dots & \dots & \vdots \\ q_{8,1} & \dots & q_{i,8} & \dots & q_{8,8} \end{bmatrix}.$$
(4)

W metodzie można oszacować wagi kryteriów względem, których obliczono oceny cząstkowe wariantów konstrukcji opon. Wektor wag ma następującą postać:

$$\boldsymbol{\rho} = [\rho_1 \quad \dots \quad \rho_j \quad \dots \quad \rho_8]. \tag{5}$$

Metoda wagowo-korelacyjna umożliwia przekształcenia problemu skalaryzacji wielowymiarowej do problemu skalaryzacji jednowymiarowej [15]. Wyznaczono kryterium kompromisowe w oparciu o założenie, że średnia ważona współczynników korelacji kryteriów cząstkowych z kryterium kompromisowym dąży do maksimum, zgodnie z poniższą zależnością:

$$S(Q_0, Q) = \sum_{j=0}^{J=1} r(Q_0, Q_j) \times \rho_j \to max!, \qquad (6)$$

gdzie:

S(Q₀, Q) – średnia ważona współczynników korelacji kryteriów cząstkowych z kryterium kompromisowym,

 $r(Q_0, Q_j)$ – współczynnik korelacji między j-tym kryterium cząstkowym a kryterium kompromisowym,

 ρ_j – waga j-tego kryterium cząstkowego.

Wynikiem przekształcenia, zgodnie z powyższą zależnością, jest wektor ocen kompromisowych Q_0 , następującej postaci:

$$Q_{0} = \begin{bmatrix} Q_{01} \\ \vdots \\ Q_{0,i} \\ \vdots \\ Q_{08} \end{bmatrix}.$$
 (7)

Zadanie rozwiązano przy pomocy modułu solver arkusza kalkulacyjnego MS Excel. Po wprowadzeniu modelu numerycznego [11], opisanego metod*ą wagowo-korelacyjną* i podstawieniu danych z tabeli nr 4 otrzymano następujące wartości Q_{0i} , dla każdego przypadku rozwiązania konstrukcyjnego. Wyniki obliczeń zamieszczono w tabeli nr 5. Wszystkim kryteriom przypisano wagi $\rho_i=1$.

Tabela 5. Wartości funkcji Q_{0i} **Tabele 5.** Values of the function Q_{0i}

Oznaczenie rozwiązania konstrukcyjnego	$\mathbf{Q}_{0\mathrm{i}}$
\mathbf{a}_{V1}	0,08366
a _{v2}	0,37369
a _{v3}	0,02133
a _{V4}	0,36100
a _{v5}	0,34615
a _{v6}	0,29380
a _{V7}	0,99294
a _{v8}	0,34657

Rozwiązaniem optymalnym w przekształconym zadaniu skalaryzacji jednowymiarowej [1] jest to, dla którego wartość funkcji Q_{0i} spełnia warunek:

$$Q^{MIN} = Q_{0i} \text{ jezeli } \bigwedge_{1 \le i \le 8} Q_{0i} \ge Q^{MIN} .$$
 (8)

Analiza wyników obliczeń zamieszczona w tabeli 5 prowadzi do wniosku, że optymalnym rozwiązaniem jest wariant V3 opony (protektor skośny). Wartość funkcji celu dla tego rozwiązania konstrukcyjnego wynosi Q_{03} *=0,02133. Dla porównania, następny w kolejności kształt bieżnika – "łukowy", odpowiadający rzeczywistej oponie generuje wartość funkcji Q_{01} = 0,08366, z wynikiem blisko czterokrotnie gorszym. Najgorszym kształtem protektora ze względu na propagację naprężeń w pod*lożu jest geometria kostki (Q*₀₇= 0,99294). Takie rozwiązanie konstrukcyjne można znaleźć w niektórych maszynach budowlanych oraz przeznaczonych do transportu wewnętrznego w halach produkcyjnych.

WNIOSKI

Wyniki obliczeń MES wykazują, że:

- kształt bieżnika ma wpływ na propagację nacisków w podłożu, przy czym opony ze "skośnym" protektorem generują najmniejsze wartości badanych wielkości w porównaniu z pozostałymi wariantami,
- na wartość nacisków istotny wpływ ma parametr określający kąt nachylenia bieżnika do osi jazdy,
- można zastąpić stosowane obecnie geometrie protektora pneumatycznego mechanizmu jezdnego rozwiązaniami wydatnie poprawiającymi negatywne aspekty oddziaływania kołowego mechanizmu jezdnego na podłoże.

Zastosowanie systemów CAD i obliczeń MES w omawianej problematyce daje wymierne korzyści, do których należa m.in.:

- znaczne skrócenie czasu wykonywanych badań i uniezależnienie procesu badawczego od warunków pogodowych i klimatycznych,
- odciążenie zespołu projektowego od prac zrutynizowanych i nietwórczych związanych z czasochłonnym przygotowywaniem stanowisk badawczych,
- ułatwienie wykonania analizy porównawczej badanych opon oraz rodzajów podłoża,
- przeprowadzenie wiarygodnych badań symulacyjnych w fazie projektowania opony i układu napędowego, bez konieczności wykonywania kosztownych i czasochłonnych badań laboratoryjnych,
- wprowadzenie cech konstrukcyjnych bieżnika, które będą generowały mniejsze naciski układu jezdnego na glebę i ich propagacje w głąb podłoża.

LITERATURA

- Bogucki M. 2009: Optymalizacja doświadczalna. Wariant jednokryterialny, MOTROL Motorization and power industry of agriculture, volume 13, Komisja Motoryzacji i Energetyki Rolnictwa PAN Oddział w Lublinie, 11, 22-30.
- 2. Bekker M.G. 1969: Introduction to terrain-vehicle system, The University of Michigan Press, Ann Arbor.
- 3. Jakliński L. 2006: Mechanika układu pojazd-teren w teorii i badaniach. Wybrane zagadnienia, OWPW.
- Jakliński L. 1999: Modele oddziaływania koła pneumatycznego na glebę, OWPW.
- Jakliński L. 2004: Monitorowanie rozkładu nacisków jednostkowych w badaniach polowych. Technika Rolnicza, Ogrodnicza, Leśna, nr 1, 27-28
- Jakliński L., Pilarczyk S. 2008: Badanie rozkładu nacisków jednostkowych w glebie z uwzględnieniem występowania podeszwy płużnej, Journal of research and applications in agricultural engineering, Poznań, vol. 53(3), 96.
- Jakliński L., Jasiński B., Lebert M., Krzywosiński S. 2004: Monitoring tire-soil individual stresses as contribution to soil protection, Systemy Mikroprocesorowe w Rolnictwie Międzynarodowa Konferencja – Płock, 50-61.

- Jakliński L., Malesa W.: Analiza porównawcza wybranych kształtów protektora (daszkowy i łukowy) pneumatycznego mechanizmu jezdnego ze względu na propagację nacisków w glebie z zastosowaniem metod modelowania 3D i MES w systemach CAD, Sprawozdanie z pracy statutowej nr 504P/7703/2606/001.
- Jakliński L., Pilarczyk S. 2007: Analiza propagacji nacisków wybranych napędowych opon rolniczych, X Międzynarodowe Sympozjum Inżynierii Systemów Bioagrotechnicznych, Płock, Zeszyt 6(15), 29-33.
- Kolator B. 2006: Wybrane zagadnienia odkształceń napędowego koła pneumatycznego ciągnika rolniczego, MOTROL Motorization and power industry of agriculture, volume 13, Komisja Motoryzacji i Energetyki Rolnictwa PAN Oddział w Lublinie, 8, 118-124.
- 11. Korzybski W., Malesa W. 2009: Inżynierskie i biznesowe zastosowania arkusza kalkulacyjnego, Wyd. Novum, Płock.
- Król K. 2006: Metoda elementów skończonych w obliczeniach konstrukcji, Politechnika Radomska, Wydawnictwo.
- Kruszewski J., Gawroński W., Wittbrodt E., Najbar F., Grabowski S. 1975: Metoda sztywnych elementów skończonych, Arkady.
- Kruszewski Z., Jakliński L. 1990: Badania porównawcze opon napędowych do ciągników rolniczych 14.9-28 8PR "Stomil" i "Good Year", Sprawozdanie z pracy zleconej przez OZOS Stomil, Płock.
- 15. Osiński Z., Wróbel J. 1995: Teoria konstrukcji, PWN.
- 16. Pogorzelski W.: Analiza wielowymiarowej i rozmytej jakości za pomocą systemu doradczego WAKOR-2: konferencja pt. Metrologia i systemy pomiarowe – stan i perspektywy, Warszawa 15-17 listopada 1990 r.
- 17. **Pytka J., Szymaniak G.:** Investigations of stress state in soil under Tractor tyres, Teka Komisji Motoryzacji i Energetyki Rolnictwa IV/2004, s. 172, Wydawnictwo Oddziału PAN w Lublinie.
- 18. Rakowski G., Kacprzyk Z. 2005: Metoda elementów skończonych w mechanice konstrukcji, OWPW.

- 19. Soltyński A. 1966: Mechanika układu pojazd-teren, Wydawnictwo Ministerstwa Obrony Narodowej.
- Szymaniak G., Pytka J. 2003: Effects of reduced inflation pressure and ride velocity on soil surface deformation, Teka Komisji Motoryzacji i Energetyki Rolnictwa III/, 236, Wydawnictwo Oddziału PAN w Lublinie.
- Sommer C., Lebert M., Jakliński L., Jasiński B. 2003: Bodenschadverdichtung Strategien und physikalischen Bodenschutz. Landtechnik no. 2.
- 22. Zabielski M., Malesa W. 2012: Calculation of stress in contact of tire-soil with use of fem (finite element method), TEKA Commision of Motorization and Energetics in Agriculture, Vol. 12., No. 2.
- Zagrajek. T., Krzesiński G., Marek P. 2006: Metoda elementów skończonych w mechanice konstrukcji. Ćwiczenia z zastosowaniem systemu ANSYS, OWPW.
- 24. Zienkiewicz O.C. 1972: Metoda elementów skończonych, Arkady.

COMPARATIVE ANALYSIS WITH APPLICATION OF THE FINITE ELEMENT METHOD OF SELECTED SHAPES OF WHEELED UNDERCARRIAGE DUE TO THE PROPAGATION OF PRESSURES IN GROUNDWORK USING WEIGHT--CORRELATION METHOD

Summary. This article presents the application of CAD systems with the use of the finite element method (FEM) in the calculation of parameters for tire-soil interaction including contact stress for different shapes of tires wheeled undercarriage. Moreover, a distribution model of surface pressures as well as calculations of stresses in the soil with the FEM application was described. The weight-correlation method of shape optimization of tires wheeled undercarriage due to the propagation of pressures in groundwork was proposed.

Key words: tire-soil interaction, computer aided design, finite element method, contact stress, stresses in soil, poliopyimization, weight-correlation method.