PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 67 | 08 |

Tytuł artykułu

Peptydy przeciwdrobnoustrojowe - nowe możliwości zwalczania infekcji u ludzi i zwierząt

Warianty tytułu

EN
Antimicrobial peptides: new possibilities to combat infections in humans and animals

Języki publikacji

PL

Abstrakty

EN
Antimicrobial peptides (AMPs), also called peptide antibiotics, have been discovered in the early 1980s in frogs They were antimicrobial substances called magainins. AMPs are among the oldest defense mechanisms in plants, humans and animals. The major peptides include i.a. defensins, cathelicidins and protegrins. The mechanisms of action of antimicrobial peptides rely on the permeabilization of the microbial membrane, destabilization of the lipid bilayer structure, creation of micelles or channels within the membrane, binding lipopolysaccharide (LPS), preventing DNA replication, inhibiting protein expression, releasing ATP, as well as binding free iron and removing it from the microbial growth environment. At present, intensive research is being conducted on the use of AMPs in human and veterinary medicine, including treatment of infections such as acne, skin infections, sepsis, and bacterial infections of the diabetic foot. Among others, the following preparations are being tested: Ambicin, for the treatment of infections caused by Mycobacterium, and Iseganan, protegrin for the treatment of mouth inflammation, CF and chronic lung infections. P. aeruginosa-infected animals treated with the D2A21 preparation showed 100% survival. Some of the AMPs show biocidal activity against Bacillus anthracis. Defensins isolated from the mucus and tissues of many fish species have the ability to protect fish from infections by Aeromonas hydrophila, Pseudomonas fluorescens, and Vibrio anguillarum. Beneficial effects of using defensins in the treatment of Borrelia burgdorferi infections in dogs have been described. Synthetic peptides are used for the production of a vaccine against parvovirosis. Peptides obtained from lactic acid bacteria (LAB) reduce the contamination and increase the stability of food products. AMPs are also useful for decontaminating the environment and medical equipment, as well as for sterilizing catheters. They have also been used to develop biocidal self-disinfecting surfaces (BSOs). Moreover, AMPs can be used in hospital hygiene and veterinary medicine, e.g., for the treatment of protective clothing, wipes, filters, ventilation, etc.

Wydawca

-

Rocznik

Tom

67

Numer

08

Opis fizyczny

s.517-521,bibliogr.

Twórcy

autor
  • Ośrodek Diagnostyki i Zwalczania Zagrożeń Biologicznych, Wojskowy Instytut Higieny i Epidemiologii w Puławach, ul.Lubelska 2, 24-100 Puławy
autor

Bibliografia

  • 1.Berrocal-Lobo M., Molina A., Rodriguez-Palenzuela P., Garcia-Olmedo F., Rivas L.: Leishmania donovani: Thionins, plant antimicrobial peptides with leishmanicidal activity. Exp. Parasitol. 2009, 122, 247-249.
  • 2.Bolintineanu D., Hazrati E., Davis H. T., Lehrer R. I., Kaznessis Y. N.: Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides 2010, 31, 1-8.
  • 3.Chalekson C. P., Neumeister M. W., Jaynes J.: Treatment of infected wounds with the antimicrobial peptide D2A21. J. Trauma 2003, 54, 770-774.
  • 4.Chong-Cerrillo C., Selsted M. E., Peterson E. M., de la Maza L. M.: Susceptibility of human and murine Chlamydia trachomatis serovars to granulocyte and epithelium derived antimicrobial peptides. J. Pept. Res. 2003, 61, 237-242.
  • 5.Chung H.-J., Montville T. J., Chikindas M. L.: Nisin depletes ATP and proton motive force in mycobacteria. Lett. Appl. Microbiol. 2000, 31, 416-420.
  • 6.Cowland J. B., Johnsen A. H., Borregaard N.: hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett. 1995, 368, 173-176.
  • 7.Dale B. A., Fredericks L. P.: Antimicrobial Peptides in the Oral Environment: Expression and Function in Health and Disease. Curr. Issues Mol. Biol. 2005, 7, 119-134.
  • 8.Dawson R. M., McAllister J., Liu C.: Characterisation and evaluation of synthetic antimicrobial peptides against Bacillus globigii, Bacillus anthracis and Burkholderia thailandensis. Int. J. Antimicrob. Agents 2010, 36, 359-363.
  • 9.Desbois A. P., Lang S., Gemmell C. G., Coote P. J.: Surface disinfection properties of the combination of an antimicrobial peptide, ranalexin, with an endopeptidase, lysostaphin, against methicillin-resistant Staphylococcus aureus (MRSA). J. Appl. Microbiol. 2010, 108, 723-730.
  • 10.Ganz T., Selsted M. E., Szklarek D., Harwig S. S. L., Daher K., Bainton D. F., Lehrer R. I.: Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 1985, 76, 1427-1435.
  • 11.Gaudreault E., Gosselin J.: Leukotriene B4 induces release of antimicrobial peptides in lungs of virally infected mice. J. Immunol. 2008, 180, 6211-6221.
  • 12.Giacometti A., Cirioni O., Ghiselli R., Bergnach C., Orlando F., D'Amato G., Mocchegiani F., Silvestri C., Del Prette M. S., Skerlavaj B., Saba V., Zanetti M., Scalise G.: The antimicrobial peptide BMAP-28 reduces lethality in mouse models of staphylococcal sepsis. Crit. Care Med. 2004, 32, 2485-2490.
  • 13.Hancock R. E. W.: Cationic antimicrobial peptides: towards clinical applications. Expert Opin. Investig. Drugs 2000, 9, 1723-1729.
  • 14.Hancock R. E. W., Chapple D. S.: Peptide antibiotics. Antimicrob. Agents Chemother. 1999, 43, 1317-1323.
  • 15.Jin J.-Y., Zhou L., Wang Y., Li Z., Zhao J.-G., Zhang Q.-Y., Gui J.-F.: Antibacterial and antiviral roles of a fish â-defensin expressed both in pituitary and testis. PLoS One 2010, 5 (12), 1-14.
  • 16.Lupetti A., Paulusma-Annema A., Welling M. M., Senesi S., van Dissel J. T., Nibbering P. H.: Candidacidal activities of human lactoferrin peptides deri ved from the N terminus. Antimicrob. Agents Chemother. 2000, 44, 3257-3263.
  • 17.Malangon R. F.: Design and synthesis of short antimicrobial peptides for plant protection. Study of their mode of action. Programma de doctorat en ciències experimentals i sostenibilitat. Universitat de Girona 2010, 1-127.
  • 18.Mathews M., Jia H. P., Guthmiller J. M., Losh G., Graham S., Johnson G. K., Tack B. F., McCray P. B.: Production of β-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect. Immun. 1999, 67, 2740-2745.
  • 19.Mello C., Adams D. S., Politz S.: Cloning and expression of plasmids encoding multimers of antimicrobial peptides indolicidin and pgq. A Thesis Submitted to the faculty of Worcester Polytechnic Institute 2003, 2-81.
  • 20.Mihajlovic M., Lazaridis T.: Antimicrobial peptides bind more strongly to membrane pores. Biochim. Biophys. Acta 2010, 1798, 1494-1502.
  • 21.Mitta G. P., Galinier R. P., Banaigs B. C., Lasserre E. V.: Peptyd przeciw mikroorganizmom zwany papilozyną, gen kodujący ten peptyd, wektor, transformowany organizm i zawierająca ten peptyd kompozycja. Europejski Biuletyn Patentowy 2005, 49, 1-12.
  • 22.Okuyama-Nishida Y., Akiyama N., Sugimori G., Nomura K., Ogawa K., Homma K. J., Sekimizu K., Tsujimoto M., Natori S.: Prevention of death in bacterium-infected mice by a synthetic antimicrobial peptide, L5, through activation of host immunity. Antimicrob. Agents Chemother. 2009, 53, 2510-2516.
  • 23.Otvos L.: Synthesis of a multivalent, multiepitope vaccine construct. Methods Mol. Biol. 2008, 494, 263-273.
  • 24.Puttalingamma V., Begum K., Bawa A. S.: Antimicrobial peptides - new weapons against enteric pathogens. P. J. Nutr. 2006, 5, 432-435.
  • 25.Rydlo T., Miltz J., Mor A.: Eukaryotic antimicrobial peptides: Promises and premises in food safety. J. F. Sci. 2006, 71, 125-135.
  • 26.Salzman N. H., Ghosh D., Huttner K. M., Paterson Y., Bevins C. L.: Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 2003, 422, 522-526.
  • 27.Sánchez L., Calvo M., Brock J. H.: Biological role of lactoferrin. Arch. Dis. Child. 1992, 67, 657-661.
  • 28.Saravana P., Kumar S.: Diagnostic and immunoprophylactic applications of synthetic peptides in veterinary microbiology. Microbiol. Res. 2009, 1, 1-6.
  • 29.Sarmaşik A.: Antimicrobial peptides: a potential therapeutic alternative for the treatment of fish diseases. Turk. J. Biol. 2002, 26, 201-207.
  • 30.Todd S. M., Sonenshine D. E., Hynes W. L.: Tissue and life-stage distribution of a defensin gene in the Lone Star tick, Amblyomma americanum. Med. Vet. Entomol. 2007, 21, 141-147.
  • 31.Velden W. J. F. M. van der, van Iersel T. M. P., Blijlevens N. M. A., Donnelly J. P.: Safety and tolerability of the antimicrobial peptide human lactoferrin I-II (hLFI-II). BMC Med. 2009, 7, 1-8.
  • 32.Vreuls C., Zocchi G., Garitte G., Archambeau C., Martial J., van de Weerdt C.: Biomolecules in multilayer film for antimicrobial and easy-cleaning stainless steel surface applications. Biofouling 2010, 26, 645-656.
  • 33.Wang W., Cole A. M., Hong T., Waring A. J., Lehrer R. I.: Retrocyclin, an antiretroviral θ-defensin, is a lectin. J. Immunol. 2003, 170, 4708-4716.
  • 34.Wang Z., Wang G.: APD: the antimicrobial peptide database. Nucleic Acids Res. 2004, 32, 590-592.
  • 35.Wiesner J., Vilcinskas A.: Antimicrobial peptides. The ancient arm of the human immune system. Virulence 2010, 1, 440-464.
  • 36.Winkler D. F. H., Hilpert K.: Synthesis of antimicrobial peptides using the SPOT technique. Methods Mol. Biol. 2010, 618, 111-124.
  • 37.Yadava P., Zhang C., Sun J., Hughes J. A.: Antimicrobial activities of human β-defensins against Bacillus species. Int. J. Antimicrob. Agents 2006, 28, 132-137.
  • 38.Zasloff M.: Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. 1987, 84, 5449-5453.
  • 39.Zhao W., Lu L., Tang Y.: Research and application progress of insect antimicrobial peptides on food industry. Int. J. Food Eng. 2010, 6, 1-17.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e65126cf-361b-480f-b48c-00574a3e61e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.