PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 3 |

Tytuł artykułu

Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L.

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the present study was to examine the ability of I. pseudacorus L., an ornamental macrophyte of great potential for phytoremediation, to tolerate and accumulate Cr and Zn. Plants were grown in nutritive solution with ZnCl₂ or CrCl₃‧6H₂O at 0, 10, 50, 100, and 200 lg ml⁻¹ for 5 weeks; all survived and continued growing. The accumulation of Cr and Zn increased with increasing supply in all plant tissues, to reach 59.97 mg Cr and 25.64 mg Zn in roots. Leaves retained a remarkable amount of Zn (14.2 mg). Growth inhibition reached 65% and 31% (dry weight) in response to Cr and Zn, respectively. The root:shoot dry matter partitioning (R/S) increased 80% at 100 lg ml⁻¹ CrCl₃. The most marked alterations in mineral content were in roots, where both metals decreased Al, Ca, Mg, Mn and S, and increased P concentration. No effect was noted on either leaf chlorophyll fluorescence kinetics (Fv/Fm and ΦPSII), or photosynthetic pigment content, signifying that the light phase of photosynthesis was not impaired. Carbon isotope composition (δ¹³C) was only slightly heavier, indicating that the reduction of carbon fixation was not the main cause for growth decrease. This was attributed to the restricted mineral uptake and to the increased demand of carbohydrates of damaged roots. Biomass allocation to rhizomes (Cr) or roots (Zn) contributes to heavy metal tolerance by limiting transpiration and increasing metal–storing tissues and the surface for water and cation uptake. This species is a good candidate for Cr rhizofiltration and Zn phytoextraction.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

3

Opis fizyczny

p.1217-1228,fig.,ref.

Twórcy

autor
  • Unit of Plant Physiology, Department of Plant Biology, Faculty of Biology, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
autor
  • Unit of Plant Physiology, Department of Plant Biology, Faculty of Biology, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
autor
  • Unit of Plant Physiology, Department of Plant Biology, Faculty of Biology, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
autor
  • Unit of Plant Physiology, Department of Plant Biology, Faculty of Biology, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain

Bibliografia

  • Ali NA, Dewez D, Didur O, Popovic R (2006) Inhibition of photosystem II photochemistry by Cr is caused by the alteration of both D1 protein and oxygen evolving complex. Photosynth Res 89:81–87. doi:10.1007/s11120-006-9085-5
  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126
  • Bakker RR, Elbersen HW (2005) Managing ash content and quality in herbaceous biomass: an analysis from plant to product. In: 14th European biomass conference and exhibition, 17–21 October 2005, Paris, France
  • Belmont MA, Metcalfe CD (2003) Feasibility of using ornamental plants (Zantedeschia aethiopica) in subsurface flow treatment wetlands to remove nitrogen, chemical oxygen demand and nonylphenol ethoxylate surfactants—a laboratory-scale study. Ecol Eng 21:233–247. doi:10.1016/j.ecoleng.2003.10.003
  • Bonet A, Poschenrieder C, Barceló J (1991) Chromium III – Iron Interaction in Fe-deficient and Fe-sufficient bean plants. 1. Growth and nutrient content. J Plant Nutr 14:403–414. doi: 10.1080/01904169109364211
  • Boutton TW, Archer SR, Milwood AJ, Zitzer SF, Bol R (1998) δ¹³C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82:5–41. doi:10.1016/S0016-7061(97)00095-5
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702
  • Buchner P, Takahashi T, Hawkesford J (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and longdistance transport. J Exp Bot 55:1765–1773. doi:10.1093/jxb/erh206
  • Caldelas C, Bort J, Febrero A (2012) Ultrastructure and subcellular distribution of Cr in Iris pseudacorus L. using TEM and X-ray microanalysis. Cell Biol Toxicol 28:57–68. doi:10.1007/s10565-011-9205-7
  • Chandra P, Kulshreshtha K (2004) Chromium accumulation and toxicity in aquatic vascular plants. Bot Rev 70:313–327. doi: 10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2
  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74. doi: 10.1016/S0269-7491(99)00238-9
  • Deng H, Ye ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ Pollut 141:69–80. doi:10.1016/j.envpol.2005.08.015
  • Dhir B, Sharmila P, Pardha Saradhi P (2008) Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Braz J Plant Physiol 20:61–70. doi:10.1590/ S1677-04202008000100007
  • Farquhar GD (1983) On the nature of isotope discrimination in C4 species. Aust J Plant Physiol 9:205–226. doi:10.1146/annurev. pp.40.060189.002443
  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9
  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18
  • Han Y, Yuan H, Huang S, Guo Z, Xia B, Gu J (2007) Cadmium tolerance and accumulation by two species of Iris. Ecotoxicol 16:557–563. doi:10.1007/s10646-007-0162-0
  • Hara T, Sonoda Y (1979) Comparison of the toxicity of heavy metals to cabbage growth. Plant Soil 51:127–133
  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–615. doi:10.1016/j.tplants.2006.10.007
  • Janik E, Maksymiec W, Mazur R, Garstka M, Gruszecki WI (2010) Structural and functional modifications of the major light-harvesting complex II in cadmium- or copper-treated Secale cereale. Plant Cell Physiol 51:1330–1340. doi:10.1093/pcp/pcq093
  • Krall JP, Edwards G (1992) Relationship between photosystem II activity and CO₂ fixation in leaves. Physiol Plant 86:180–187. doi:10.1111/j.1399-3054.1992.tb01328.x
  • Krugh B, Bischham L, Miles D (1994) The solid-state chlorophyll meter, a novel instrument for rapidly and accurately determining the chlorophyll concentration in seedling leaves. Maize Genet Coop News Lett 68:25–27
  • Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266
  • Kuzovkina YA, Quigley MF (2005) Willow beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut 162:183–204. doi:10.1016/j.ecoleng.2009.03.010
  • Larue C, Korboulewsky N, Wang RY, Mévy JP (2010) Depollution potential of three macrophytes: exudated, wall-bound and intracellular peroxidase activities plus intracellular phenol concentrations. Bioresour Technol 101:7951–7957. doi:10.1016/j. biortech.2010.05.010
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148: 350–382
  • Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33:122–138. doi:10.1016/j. envint.2006.08.004
  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Formation of metallic copper nanoparticles at the soil–root interface. Environ Sci Technol 42:1766–1772. doi:10.1021/es072017o
  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/ 51.345.659
  • Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74:642–647. doi: 10.1016/j.chemosphere.2008.10.019
  • Oláh V, Lakatos G, Bertók C, Kanalas P, Szőllősi E, Kis J, Mészáros I (2010) Short-term chromium (VI) stress induces different photosynthetic responses in two duckweed species, Lemna gibba L. and Lemna minor L. Photosynthetica 48:513–520. doi: 10.1007/s11099-010-0068-6
  • Paiva L, Oliveira J, Azevedo R, Ribeiro D, Silva M, Vitoria A (2009) Ecophysiological responses of water hyacinth exposed to Cr³⁺ and Cr⁶⁺. Environ Exp Bot 65:403–409. doi:10.1016/j.envexpbot. 2008.11.012
  • Pavlovič A, Masarovičová E, Král’ová K, Kubová J (2006) Response of chamomile plants (Matricaria recutita L.) to cadmium treatment. Bull Environ Contam Toxicol 77:763–771. doi: 10.1007/s00128-006-1129-1
  • Polyák K, Hlavay J (1999) Environmental mobility of trace metals in sediments collected in the Lake Balaton. Fresenius J Anal Chem 363:587–593
  • Prasad MNV (2004) Heavy metal stress in plants. From biomolecules to ecosystems. Springer, Berlin
  • Prasad DDK, Prasad ARK (1987) Altered delta-aminolevulinic-acid metabolism by lead and mercury in germinating seedlings of bajra (Pennisetum typhoideum). J Plant Phys 127:241–249
  • Prasad MNV, Strzałka K (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht
  • Price AH, Steele KA, Gorham J, Bridges JM, Moore BJ, Evans JL, Richardson P, Jones RGW (2002) Upland rice grown in soilfilled chambers and exposed to contrasting water-deficit regimes. I. Root distribution, water use and plant water status. Field Crops Res 76:11–24. doi:10.1016/S0378-4290(02)00012-6
  • Qian JH, Zayed A, Zhu YL, Yu M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. J Environ Qual 28:1448–1455
  • Qiu S, Huang S (2008) Study on growth and Cd accumulation of root system of Iris pseudacorus seedling under Cd stress. J Plant Res Environ 17:33–38. doi:CNKI:SUN:ZWZY.0.2008-03-007
  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753. doi:10.1080/10643380801910058
  • Romanowska E, Igamberdiev AU, Parys E, Gardestrom P (2002) Stimulation of respiration by Pb²⁺ in detached leaves and mitochondria of C-3 and C-4 plants. Physiol Plant 116:148–154. doi:10.1034/j.1399-3054.2002.1160203.x
  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–648
  • Samecka-Cymerman A, Kempers AJ (2001) Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Sci Total Environ 281:87–98. doi:10.1016/S0048-9697(01)00838-5
  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagem S (2005) Chromium toxicity in plants. Environ Int 31:739–753. doi: 10.1016/j.envint.2005.02.003
  • Skeffington RA, Shewry PR, Peterson PJ (1976) Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132:209–320
  • Stobrawa K, Lorenc-Plucin´ska G (2007) Changes in carbohydrate metabolism in fine roots of the native European black poplar (Populus nigra L.) in a heavy-metal-polluted environment. Sci Total Environ 373:157–165. doi:10.1016/j.scitotenv.2006.11.019
  • Todeschini V, Lingua G, D’Agostino G, Carniato F, Roccotiello E, Berta G (2011) Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Env Exp Bot 71:50–56. doi:10.1016/j.envexpbot.2010.10.018
  • USEPA (2005) Priority pollutants. Code of federal regulations. Title 40: protection of environment, chap I. Appendix A to 40 CFR Part 423. 1st July 2005. Environmental Protection Agency
  • Uveges JL, Corbett AL, Mal TK (2002) Effects of lead contamination on the growth of Lythrum salicaria (purple loosestrife). Environ Pollut 120:319–323. doi:10.1016/S0269-7491(02)00144-6
  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575. doi:10.1016/j.chemo sphere.2007.02.052
  • Wei L, Yan C, Wu G, Guo X, Ye B (2008) Variation of δ¹³C in Aegiceras corniculatum seedling induced by cadmium application. Ecotoxicol 17:480–484. doi:10.1007/s10646-008-0201-5
  • Zhang X, Liu P, Yang Y, Chen W (2007) Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. J Environ Sci 19:902–909
  • Zhou YQ, Huang SZ, Yu SL, Gu JG, Zhao JZ, Han YL, Fu JJ (2010) The physiological response and sub-cellular localization of lead and cadmium in Iris pseudacorus L. Ecotoxicol 19:69–76. doi: 10.1007/s10646-009-0389-z

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e3ef9b58-72a6-4ff8-81b2-1daab53c9758
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.