PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 2 |

Tytuł artykułu

Phytoplankton community in early stages of reservoir development-a case study from the newly formed, colored, and episodic lake of mining-subsidence genesis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Mining activities affect a landscape in different ways, including by the formation of subsidence troughs, which after being inundated form wetlands and lakes. The development of new mining reservoirs may give a unique opportunity to study the early stages of colonization by various freshwater communities, including phytoplankton. Our paper presents the results of phycological research undertaken in newly formed subsidence reservoir near the coal mine “Bogdanka” (Polesie Lubelskie) a few months after its filling with water. The reservoir represented a unique, rare limnologic type due to the fact that it disappeared as a result of intended melioration works in the autumn of the same year. The study focused on morphometric measurements of the episodic reservoir, determination of general physicochemical parameters of water, and qualitative and quantitative structure of the phytoplankton community, was undertaken in five separated basins. A total of 80 algal taxa were determined. Most of them belonged to euglenoids (Euglenophyta-36) and green algae (Chlorophyta-26). Among euglenoids, most species were represented by Trachelomonas genus (14), while among green algae, most species were assigned to Scenedesmus genus (8). Several rare species were found, including: Scenedesmus bacillaris Gutw., Dinobryon petiolatum Willén, and Trachelomonas botanica Playfair. Green algae and euglenoids also had major contributions to the total phytoplankton abundance, which in all study sites did not exceed 2.2×10⁶ ind.·dm⁻³. This phytoplankton structure was probably influenced by the high water color related to particular and dissolved organic matter from pre-existing alder forests. Some differences in phytoplankton structure found among sampling sites were probably connected with habitat differentiation in terms of exposure to light.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

2

Opis fizyczny

p.585-591,fig.,ref.

Twórcy

autor
  • Department of Hydrobiology, University of Life Sciences in Lublin, Dobrzanskiego 37, 20-262 Lublin, Poland
  • Department of General Ecology, University of Life Sciences University in Lublin, Akademicka 15, 20-950 Lublin, Poland
  • Department of Botany and Hydrobiology, The John Paul II Catholic University of Lublin, Konstantynow 1H, 20-708 Lublin, Poland

Bibliografia

  • 1. DOLNÝ A., HARABIŠ F. Underground mining can contribute to freshwater biodiversity conservation: Allogenic succession forms suitable habitats for dragonflies. Biol. Conserv. 145, 109, 2012.
  • 2. HARABIŠ F., DOLNÝ A. Human altered ecosystems: suitable habitats as well as ecological traps for dragonflies (Odonata): the matter of scale. J. Insects Conserv. 16, 121, 2012.
  • 3. WILK-WOŹNIAK E., ŻUREK R. Phytoplankton and its relationships with chemical parameters and zooplankton in meromictic Piaseczno reservoir, Southern Poland. Aquat. Ecol. 40, 165, 2006.
  • 4. WOŁOWSKI K., TURNAU K., HENRIQUES F.S. The algal flora of an extremely acidic, metal-rich drainage pond of Sao Domingos pyrite mine (Portugal). Cryptogam. Algol. 29, 313, 2008.
  • 5. ESPAÑA J., PAMO E., DIEZ M., SANTOFIMIA E. Physico-chemical gradients and meromictic stratification in Cueva de la Mora and other acidic pit lakes of the Iberian Pyrite Belt. Mine Water Environ. 28, 15, 2009.
  • 6. MCCULLOUGH C., ETTEN E.B. Ecological Restoration of Novel Lake Districts: New Approaches for New Landscapes. Mine Water Environ. 30, 312, 2011.
  • 7. YUCEL D. S., BABA A. Geochemical Characterization of Acid Mine Lakes in Northwest Turkey and Their Effect on the Environment. Arch. Environ. Contam. Toxicol. 64, 357, 2013.
  • 8. WOŁOWSKI K., UZAROWICZ Ł., ŁUKASZEK M., PAWLIK-SKOWROŃSKA B. Diversity of algal communities in acid mine drainages of different physico-chemical properties. Nova Hedwigia. 97, 117, 2013.
  • 9. LEWIN I., SMOLIŃSKI A. Rare and vulnerable species in the mollusc communities in the mining subsidence reservoirs of an industrial area (The Katowicka Upland, Upper Silesia, Southern Poland). Limnologica 36, 181, 2006.
  • 10. BIELAŃSKA-GRAJNER I., GŁADYSZ A. Planktonic rotifers in mining lakes in the Silesian Upland: Relationship to environmental parameters. Limnologica 40, 67, 2010.
  • 11. FAN T., YAN J., WANG S., ZHANG B., RUAN S., ZHANG M., LI S., CHEN Y., LIU J. Water quality variation of mining-subsidence lake during the initial stage: cases study of Zhangji and Guqiao Mines. J.Coal Sci.Engineer. 18, 297, 2012.
  • 12. LEWIN I. Occurrence of the Invasive Species Potamopyrgus antipodarum (Prosobranchia: Hydrobiidae) in Mining Subsidence Reservoirs in Poland in Relation to Environmental Factors. Malacologia. 55, 15, 2012.
  • 13. MILLER L.L., RASMUSSEN J.B., PALACE V.P. Selenium Bioaccumulation in Stocked Fish as an Indicator of Fishery Potential in Pit Lakes on Reclaimed Coal Mines in Alberta, Canada. Environ. Manage. 52, 72, 2013.
  • 14. TAVERNINI S., NIZZOLI D., ROSSETTI G.., VIAROLI S. Trophic state and seasonal dynamics of phytoplankton communities in two sand-pit lakes at different successional stages J. Limnol. 68, 217, 2009.
  • 15. WILLIAMS W. D., DE DECKKER P., SHIEL R. J. The limnology of Lake Torrens, an episodic salt lake of central Australia, with particular reference to unique events in 1989. Hydrobiologia 384, 101, 1998.
  • 16. WATERKEYN A., GRILLAS P., VANSCHOENWINKEL B., BRENDONCK L. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biol. 53, 1808, 2008.
  • 17. ECHANIZ S., VIGNATTI A. M. Diversity and changes in the horizontal distribution of crustaceans and rotifers in an episodic wetland of the central region of Argentina. Biota Neotrop. 10, 133, 2010.
  • 18. UTERMÖHL H. The improvement of quantitative phytoplankton analyses – methods. Mitt. Internat. Verein. Limnol. 9, 1, 1958.
  • 19. ISO 10260. Water quality – Measurement of biochemical parameters – Spectrometric determination of the chlorophyll-a concentration, PKN, Warszawa, 1992.
  • 20. LEAN D. Attenuation of solar radiation in humic waters In: Hessen D.O. and Tranvik L.J. (Eds.), Aquatic humic substances, Ecology and Biogeochemistry, Springer-Verlag, Berlin, Heidelberg, 109, 1998.
  • 21. WEITHOFF G., MOSER M., KAMJUNKE N., GAEDKE U., WEISSE T. Lake morphometry and wind exposure may shape the plankton community structure in acidic mining lakes. Limnologica 40, 161, 2010.
  • 22. MOSER M., WEISSE T. Combined stress effect of pH and temperature narrows the niche width of flagellates in acid mining lakes. J. Plankton Res. 33, 1023, 2011.
  • 23. WEISSE T., BERENDONK T., KAMJUNKE N., MOSER M., SCHEFFEL U., STADLER P., WEITHOFF G. Significant habitat effects influence protist fitness: evidence for local adaptation from acidic mining lakes. Ecosphere 2, 134, 2011.
  • 24. HRDINKA T., ŠOBR M., FOTT J., NEDBALOVÁ L. The unique environment of the most acidified permanently meromictic lake in the Czech Republic. Limnologica 43, 417, 2013.
  • 25. RÖNICKE H., SCHULTZE M., NEUMANN V., NITSCHE C., TITTEL J. Changes of the plankton community composition during chemical neutralisation of the Bockwitz pit lake. Limnologica 40, 191, 2010.
  • 26. SCHAGERL M., BLOCH I., ANGELER D., FESL C. The use of urban clay-pit ponds for human recreation: assessment of impacts on water quality and phytoplankton assemblages. Environ. Monit. Assess. 165, 283, 2010.
  • 27. KRUPA D., CZERNAŚ K. Structure and productivity of phytoplankton in the depression reservoir Nadrybie near the coal mine Bogdanka in the Łęczna-Włodawa Lake District. Acta Agrophys. 1, 123, 2003 [In Polish].
  • 28. CATALAN J., CAMARERO L., FELIP M., PLA S., VENTURA M., BUCHACA T., BARTUMEUS F., DE MENDOZA G., MIRÓ A., CASAMAYOR E. O. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25, 551, 2006.
  • 29. KREBS C. Ecology: The Experimental Analysis of Distribution and Abundance, 6 ed.; Benjamin Cummings: Cloth, pp. 688, 2009.
  • 30. BORICS G., TÓTHMÉRÉSZ B., LUKÁCS B. A., VÁRBÍRÓ G. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698, 251, 2012.
  • 31. STEVIĆ F., MIHALJEVIĆ M., ŠPOLJARIĆ D. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709, 143, 2013.
  • 32. SOLÓRZANO G. G., MARTINEZ M. G. O., VAZQUEZ A. L., GARFIAS M. B. M., ZUNIGA R. E. Q., CONFORTI V. Trachelomonas (Euglenophyta) from a eutrophic reservoir in Central Mexico. J. Environ. Biol. 32, 463, 2011.
  • 33. NASELLI-FLORES L., BARONE R. Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698, 147, 2012.
  • 34. PONIEWOZIK M. Diversity of euglenophyte community in selected water bodies within the Łęczna-Włodawa Lake District. PhD Thesis, Lublin, 2007.
  • 35. KARLSSON J., BYSTROM P., ASK J., ASK P., PERSSON L., JANSSON M. Light limitation of nutrient-poor lake ecosystems. Nature 460, 506, 2009.
  • 36. NAVARRO M. A. B., MODENUTTI B. E. Precipitation patterns, dissolved organic matter and changes in the plankton assemblage in Lake Escondido (Patagonia, Argentina). Hydrobiologia 691, 189, 2012.
  • 37. AMENGUAL-MORRO C., MOYÁ NIELL G., MARTÍNEZ-TABERNER A. Phytoplankton as bioindicator for waste stabilization ponds. J. Environ. Manage. 95, 71, 2012.
  • 38. KRASZNAI E., BORICS G., VÁRBÍRÓ G., ABONYI A., PADISÁK J., DEÁK C., TÓTHMÉRÉSZ B. Characteristics of the pelagic phytoplankton in shallow oxbows. Hydrobiologia 639, 173, 2010.
  • 39. PĘCZUŁA W. Phytoplankton diversity related to habitat heterogeneity of small and shallow humic lake Płotycze (Eastern Poland). TEKA Kom. Ochr. Kształt. Środ. Przyrod. 2013 [In Print].
  • 40. IZAGUIRRE I., ALLENDE L., ESCARAY R., BUSTINGORRY J., PÉREZ G., TELL G. Comparison of morphofunctional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698, 203, 2012.
  • 41. BENERAGAMA C. K., GOTO K. Chlorophyll a: b Ratio Increases Under Low-light in 'Shade-tolerant' Euglena gracilis. Trop. Agri. Res. 22, 12, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e3e218a9-040e-4582-a2aa-4cd11df7f5f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.