PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 08 |

Tytuł artykułu

Effects of soybean–tea intercropping on soil-available nutrients and tea quality

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Plant intercropping is increasing in popularity, is conducive to plant growth and development and can improve plant quality and yield. In this study, we intercropped tea (Camellia sinensis) cv. ‘Su cha zao’ and soybean (Glycine max) cv. ‘Lamar’ in a tea plantation. The chlorophyll content was higher in intercropped tea leaves than in monoculture, and the different phenotypic characteristics of intercropping and monoculture were correlated with chlorophyll and carotenoid content. Our analyses showed that soybean–tea intercropping not only alleviated cold damage, but also influenced tea plant growth. Furthermore, the soil ammonium nitrogen (N) in intercropping mode increased during soybean flowering and mature periods and was highest in the soybean flowering and podding period. Catechin levels in tea leaves significantly decreased, and the amino acid and soluble sugars increased, for intercropped compared with monoculture tea leaves. The analysis of soil fertility and tea leaf physiological indices also indicated that N fertiliser was significantly positively correlated with free amino acids in tea leaves. In conclusion, soybean–tea intercropping affected the effective N content in soil, especially ammonium N, and the formation of the main physicochemical composition of tea leaves, as well as tea taste and aroma. Thus, intercropping can sustainably improve nutrient management and increase crop yield and quality.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

08

Opis fizyczny

Article 140 [9p.], fig.,ref.

Twórcy

autor
  • College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, Jiangsu, China
autor
  • College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, Jiangsu, China
autor
  • College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, Jiangsu, China
autor
  • College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, Jiangsu, China
autor
  • College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, Jiangsu, China
autor
  • College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, Jiangsu, China
autor
  • College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, Jiangsu, China
autor
  • College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, Jiangsu, China

Bibliografia

  • Alcázar A, Ballesteros O, Jurado JM, Pablos F, Martín MJ, Vilches JL, Navalón A (2007) Differentiation of green, white, black, Oolong, and Pu-erh teas according to their free amino acids content. J Agric Food Chem 55(15):5960–5965
  • Baumann DT, Bastiaans L, Goudriaan J, Laar HHV, Kropff MJ (2002) Analysing crop yield and plant quality in an intercropping system using an eco-physiological model for interplant competition. Agric Syst 73(2):173–203
  • Bedoussac L, Justes E (2010a) Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. Plant Soil 330(1–2):37–54
  • Bedoussac L, Justes E (2010b) The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 330(1–2):19–35
  • Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen ES, Prieur L, Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming a review. Agron Sustain Dev 35(3):911–935
  • Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PPM, Jones HG, Karley AJ (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206(1):107–117
  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330(6001):192–196
  • Carter MR (1993) Soil sampling and methods of analysis. J Environ Qual 38(1):15–24
  • Chan E, Lim YY, Wong LF, Lianto FS, Wong SK, Lim KK, Joe CE, Lim TY (2008) Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem 109(3):477–483
  • Cong WF, Hoffland E, Li L, Six J, Sun JH, Bao XG, Zhang FS, Van DWW (2015) Intercropping enhances soil carbon and nitrogen. Glob Change Biol 21(4):1715
  • Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376(1–2):1–29
  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KW, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327(5968):1008–1010
  • Gururani MA, Venkatesh J, Ganesan M, Strasser RJ, Han Y, Kim JI, Lee HY, Song PS (2015) In vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. PLoS One 10(5):e0127200
  • Harbowy ME, Balentine DA, Davies AP, Cai Y (1997) Tea Chemistry. Crit Rev Plant Sci 16(5):415–480
  • Hauggaard-Nielsen Henrik, Jørnsgård Bjarne, Kinane Julia, Jensen Steen E (2008) Grain legume-cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. In: Researching sustainable systems. Proceedings of the first scientific conference of the International Society of Organic Agriculture Research (ISOFAR), held in cooperation with the International Federation of Organic Agriculture Movements (IFOAM) and the National Association for Sustainable Agriculture, Australia (NASAA), Adelaide Convention Centre, Adelaide, South Australia, 21–23 Sep 2005, pp 3–12
  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2001) Interspecific competition, N use and interference with weeds in pea–barley intercropping. Field Crops Res 70(2):101–109
  • Ishigaki K (1974) Comparison between ammonium-nitrogen and nitrate-nitrogen on the effect of tea plant growth. Jpn Agric Res Q 8:101–105
  • Jumadi O, Hala Y, Anas I, Ali A, Sakamoto K, Saigusa M, Yagi K, Inubushi K (2008) Community structure of ammonia oxidizing bacteria and their potential to produce nitrous oxide and carbon dioxide in acid tea soils. Geomicrobiol J 25(7–8):381–389
  • Koenig RT, Cochran VL (1994) Decomposition and nitrogen mineralization from legume and non-legume crop residues in a subarctic agricultural soil. Biol Fertil Soils 17(4):269–275
  • Lee LS, Choi JH, Son N, Kim SH, Park JD, Jang DJ, Jeong Y, Kim HJ (2013) Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea. J Agric Food Chem 61(2):332–338
  • Li ZX, Yang WJ, Ahammed GJ, Shen C, Yan P, Li X, Han WY (2016) Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position. Plant Physiol Biochem 106:327–335
  • Lin ZH, Chen LS, Chen RB, Zhang FZ, Jiang HX, Ning T (2009) CO₂ assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biol 9(1):43
  • Liu W, Yu K, He T, Li F, Zhang D, Liu J (2013a) The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Scientific World J 2013:658793
  • Liu Y, Duan M, Yu Z (2013b) Agricultural landscapes and biodiversity in China. Agr Ecosyst Environ 166:46–54. https://doi.org/10.1016/j.agee.2011.05.009
  • Ma YH, Fu SL, Zhang XP, Zhao K, Chen HYH (2017) Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Appl Soil Ecol 119:171–178
  • Mauro RP, Occhipinti A, Longo AMG, Mauromicale G (2011) Effects of shading on chlorophyll content, chlorophyll fluorescence and photosynthesis of subterranean clover. J Agron Crop Sci 197(1):57–66
  • Ning J, Li D, Luo X, Ding D, Song Y, Zhang Z, Wan X (2016) Stepwise identification of six tea (Camellia sinensis (L.)) categories based on catechins, caffeine, and theanine contents combined with fisher discriminant analysis. Food Anal Methods 9(11):1–9
  • Pang J, Wang Y, Lambers H, Tibbett M, Siddique KH, Ryan MH (2013) Commensalism in an agroecosystem: hydraulic redistribution by deep-rooted legumes improves survival of a droughted shallow-rooted legume companion. Physiol Plant 149(1):79–90
  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73(1–3):149–156
  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philosoph Trans R Soc B: Biol Sci 365(1554):2959–2971. https://doi.org/10.1098/rstb.2010.0143
  • Redillas MCFR, Park SH, Lee JW, Kim YS, Jin SJ, Jung H, Bang SW, Hahn TR, Kim JK (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6(1):89–96
  • Rose TJ, Julia CC, Shepherd M, Rose MT, Van Zwieten L (2016) Faba bean is less susceptible to fertiliser N impacts on biological N₂ fixation than chickpea in monoculture and intercropping systems. Biol Fertil Soils 52(2):271–276. https://doi.org/10.1007/s00374-015-1062-8
  • Ruan JL, Sattelmacher B (2007) Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) Plants. Ann Bot 99(2):301
  • Saccenti E, Hoefsloot HCJ, Smilde AK, Westerhuis JA, Hendriks MMWB (2014) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10(3):361–374
  • Schmidt MW, Torn MS (2012) Persistence of soil organic matter as an ecosystem property: implications for experiments, feedbacks, and modeling. In: AGU fall meeting, AGU fall meeting abstracts
  • Seyfried MS, Wilcox BP (2006) Soil water storage and rooting depth: key factors controlling recharge on rangelands. Hydrol Process 20(15):3261–3275
  • Silva LS, Seabra AR, Leitão JN, Carvalho HG (2015) Possible role of glutamine synthetase of the prokaryotic type (GSI-like) in nitrogen signaling in Medicago truncatula. Plant Sci Int J Exp Plant Biol 240:98
  • Steffan-Dewenter I, Kessler M, Barkmann J, Bos MM, Buchori D, Erasmi S, Faust H, Gerold G, Glenk K, Gradstein SR, Guhardja E, Harteveld M, Hertel D, Höhn P, Kappas M, Köhler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A, Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M, Tscharntke T (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc Natl Acad Sci 104(12):4973–4978. https://doi.org/10.1073/pnas.0608409104
  • Strasserf RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transience transient in plants and cyanobacteria. Photochem Photobiol 61(1):32–42
  • Wei K, Wang L, Zhou J, He W, Zeng J, Jiang Y, Cheng H (2011) Catechin contents in tea (Camellia sinensis) as affected by cultivar and environment and their relation to chlorophyll contents. Food Chem 125(1):44–48
  • Weil RR, Magdoff F, Magdoff F, Ray RW (2004) Significance of soil organic matter to soil quality and health
  • Zhang Q, Ruan J (2016) Tea: analysis and tasting. In: Encyclopedia of food & health. Elsevier, pp 256–267
  • Zhang F, Shen J, Jing J, Li L, Chen X (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity. Springer, Heidelberg
  • Zhang Z, Zhou C, Xu Y, Huang X, Zhang L, Mu W (2016) Effects of intercropping tea with aromatic plants on population dynamics of arthropods in Chinese tea plantations. J Pest Sci 90(1):1–11
  • Zhu T, Zhang J, Meng T, Zhang Y, Yang J, Müller C, Cai Z (2014) Tea plantation destroys soil retention of NO₃⁻ and increases N₂O emissions in subtropical China. Soil Biol Biochem 73(6):106–114

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e2d8b451-b1e2-415a-842d-61fae3fdfd80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.