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BIOENERGY INNOVATIONS AND THEIR 
DETERMINANTS: A NEGATIVE BINOMINAL COUNT 
DATA ANALYSIS

The research employed a negative binominal count data model approach to ana-
lyse the determinants of bioenergy innovations with a special focus on the effect of 
energy and climate policies. A panel of 14 OECD countries were analysed using 
patent counts for the period 1978–2009 as a proxy for innovations. The policies 
examined were feed-in tariffs, quota obligations and different types of investment 
support schemes. The study found that feed-in tariffs affected innovation positively 
but quota obligations did not. The results regarding investment support programs 
were ambiguous since the dummy variable representing strong investment policies 
was statistically significant whereas the continuous variable for investment support 
schemes was not. Another finding was that electricity prices seemed to be an import- 
ant determinant of innovation and that the accumulated stock of knowledge in the 
bioenergy sector also had a positive impact on bioenergy innovation.

Keywords: economics, renewable energy, energy policy, innovation, patent, bio-
energy

Introduction

The use of bioenergy is not a novelty in global energy production. Wood, or its 
derivatives, has been one of the most important energy sources throughout human 
history. With the introduction of coal and, later on, petroleum products, the use 
of bioenergy in industrialized countries faded. However, in wake of the oil crises 
of 1973 and 1979, and lately growing concern about global warming, the need 
to find alternatives to traditional fossil fuels has become a high priority. In this 
context, bioenergy is an energy source many countries are becoming increasingly 
reliant on. The common arguments used for the growing use of bioenergy are rela-
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ted to climate issues, security-of-supply and, in some cases, to rural development 
[European Parliament 2009]. However, compared to many renewable energy 
sources, including bioenergy, fossil fuels still have cost advantages due to, for exam- 
ple, economies of scale, path dependencies in energy systems and a higher level of 
technological maturity [Neuhoff 2005]. Nevertheless, bioenergy is beneficial for 
energy production in the sense that it is readily available in many countries, not 
only in the form of wood materials or the cultivation of perennial crops, but also 
as by-products from forestry, agriculture and industrial processes. There is also 
the potential for energy extraction from municipal waste. In addition, since many 
of the areas of bioenergy technology are relatively immature, additional benefits 
might arise for first movers, for example, a country becoming an exporter of bio-
energy-related technology. Thus, in addition to climate issues, security-of-supply 
and rural development arguments, the innovation aspect of bioenergy technolo-
gies might bring further benefits for a country.

Innovation is also a key factor in the development and deployment of bioenergy 
technology. Lower operating costs by continuous improvements in existing 
technology and the development of new technologies are results of the innovation 
process. Both aspects are necessary in order to increase the competitiveness of 
bioenergy and to make it a reliable substitute for fossil fuels. To speed up the 
deployment and development of bioenergy technologies, a variety of public sup-
port schemes such as feed-in tariffs, renewable energy quotas, investment support 
schemes, tax support schemes and guaranteed electricity purchase obligations 
have emerged during the last three decades. However, the purpose of most of 
these related policy schemes has not explicitly been to stimulate innovation, but 
rather to achieve goals related to energy self-reliance and the mitigation of car-
bon emissions. One of the first policy measures introduced was publicly financed 
research development and demonstration (RD&D) [IEA 2004]. This type of sup-
port for research on bioenergy started in the mid to late 1970s and has increased 
considerably since then. For instance, the total annual sum of bioenergy RD&D in 
the 14 countries included in this study rose from 75 to 611 million USD between 
1978 and 2010 (USD in 2012).

The effect of different policy schemes on innovation has been theoretically 
and empirically investigated in a number of earlier studies [e.g. Lanjouw, 
Mody 1996; Jaffe, Palmer 1997; Brunnermeier, Cohen 2003; Walz et al. 2008; 
Johnstone et al. 2010; Noailly, Batrakova 2010; Rübbelke, Weiss 2011]. The ma-
jority of these earlier studies focused on the effect of environmental regulations, 
i.e., policies designed to increase the cost of economic activities that are deemed 
environmentally harmful. Another approach investigated commonly used support 
schemes and modeled the intensity of the implemented support. However, only 
Johnstone et al. [2010] considered the effect on bioenergy technology in particu-
lar. Thus, empirical knowledge on how specific policy schemes affect bioenergy 
related innovations is lacking. The purpose of this study was therefore to estimate 
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and analyze the determinants of bioenergy innovations with a special focus on 
the effect of energy and climate policies. This was carried out for a sample of 14 
countries and for the period between 1978 and 2009. The study specifically aimed 
to empirically test the hypothesis that innovation in bioenergy technology can be 
stimulated by appropriate policies or combinations thereof.

Research methodology

Patents as a proxy for innovation

A key issue in modeling policy-induced innovation is how to actually measure 
innovation. There is no direct measure; instead some sort of proxy must be used. 
One method to approximate innovation is to use either R&D expenditures or 
the number of scientific personnel employed. According to Rübbelke and Weiss 
[2011], these two proxies could be assumed to correlate with the level of innova-
tion. However, they could hardly be seen as an output of the innovation process, 
but rather as an input.

Another approach is to use the number of patents as a proxy for the outcome 
of innovation activities. An explanation given by Griliches [1990] is that inno-
vation could be seen as the change in accumulated knowledge (which is an indi-
scernible variable) and is proportional to research expenditures and other unob-
served influences, such as, for example, random influential scientific discoveries. 
This accumulated knowledge, i.e., level of technological development, is in turn 
a determinant of the change in an output measure which could be, for example, 
growth, productivity or the stock market value of a firm or industry. These last 
quantities are also determined by other measurable factors such as capital-deepen- 
ing and other unobservable influences. The notion here is that patents could be 
seen as an indicator of the change in accumulated knowledge; if knowledge is 
constant, no new patents should be applied for, but if knowledge is growing at a 
constant rate, patenting should increase at the same rate every year, and if the rate 
of technological change increases, the rate of patenting should increase as well. 
Among the alternative proxies at hand, patents have so far shown themselves to be 
the best indicator of the result of the innovation process [OECD 2009; Johnstone 
et al. 2010].

As with all proxies, patents also have some problematic properties. Popp 
[2003, 2005], commented on the quality aspect of an innovation when studying 
innovations in the United States before and after the SO2 permit trading system 
was introduced. He found that the number of patents was actually higher before 
the 1990s. However, the effectiveness of the patented technologies, in terms of 
the amount SO2 removed, was higher after trade began. This is counterintuitive to 
the idea that a high number of patents are equal to a high rate of growth in tech-
nological knowledge. Furthermore, not all innovations will be patented, therefore 
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patents are not a complete measure of innovation activity. Moreover, patent prac-
tices across countries are likely to be heterogeneous and the propensity to patent 
may differ between countries [Johnstone et al. 2010].

As seen in fig. 1, the number of bioenergy patents increased at a slow rate from 
the late 1970s until the mid-90s, after which patent activity started to increase 
exponentially. However, the ratio between bioenergy patents and total number of 
patents is not that encouraging when the development for the first period between 
1978 and 1996 is considered, since the share of total number of patents steadily de-
creased. This can be partly explained by the decline in energy prices that occurred 
in the 1980s and 1990s, which would have lowered the interest for bioenergy. 
This explanation could be valid despite the fact that oil prices were still quite high 
at the beginning of the 1980s. Findings by Popp [2002], for example, showed 
that the innovative effect of rising energy prices seemed to diminish relatively 
quickly after an initial price shock. The sharp increase in the number of bioenergy 
patents from the mid-90s until 2008 might be explained by the emergence during 
the 1990s of energy and climate policies related to renewable energy. Once again 
rising energy prices could also have played a role in the interest in bioenergy until 
they collapsed at the beginning of the 2008 crisis.
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Fig. 1. Total number of patents in bioenergy technologies and its share of total num-
ber of patents between 1978 and 2009 for sample countries

Source: OECD [2013]
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Determinants of innovation

In Jaffe et al. [2000], two major strands in literature were identified concerning the 
determinants of innovation. One was the evolutionary approach, and the other the 
investment-subject-to-market-failure approach. The evolutionary model builds on 
bounded rationality first formulated by Simon [1947]. In this paradigm, firms base 
their R&D decisions on rules of thumb and routines rather than on optimization. 
This behavior arises as a consequence of imperfect information [Simon 1947; 
Nelson, Winter 1982; Jaffe et al. 2000]. A theoretical framework that could be at-
tributed to the latter approach (from now on called the investment approach), and 
used in this study, is what has been named price-induced technical change [Hicks 
1932]. In this paradigm, as well as in the investment approach in general, R&D 
decisions are based on firms' efforts to maximize their profits. Accordingly, chan-
ges (or expected changes) in relative prices should stimulate inventions towards 
the reduced use of the more expensive factor of production [Newell et al. 1999; 
Popp 2002]. The notion of price-induced technical change can be further incorpor- 
ated into a three-dimensional innovation space, where innovation is a function of 
what Jaffe [1986] and Popp [2002] called supply and demand-side factors.

Supply-side factors in induced innovation were defined by Popp [2002] 
as those factors that constitute the technological opportunity for innovators to 
succeed in creating new knowledge. Technological change is not only seen as 
a function of changes in relative prices for inputs, but also of previous invest-
ment in R&D and the accumulated knowledge stock. This serves as a proxy for 
earlier scientific advancements, making further discoveries easier (in absolute 
numbers). An early formulation of the concept was made by Scherer [1965] and 
Schmookler [1966]. Early R&D policies in the 1970s were designed using this 
understanding.

In a similar way to supply-side factors, Popp used the concept of demand-side 
factors, or market variables, to represent factors that will induce innovation by 
increasing the value of new innovations [Popp 2002]. Thus, price-induced inno-
vation is embraced by this definition of input prices and market demand of output. 
The role of policy here is to change the relative prices of the output from renew- 
able energy sources with regard to conventional fossil-based energy generation.

Energy and climate policy determinants

The policy areas of renewable energy and climate change are relatively new, even 
though interest in the latter was originally awakened after the oil crisis in the 1970s. 
In order to understand the fundamentals of policy areas and their connection to 
bioenergy, a short description of the technological properties with economic rele-
vance for renewable energy production is needed. Neuhoff [2005] argued that 
network externalities are one of the major obstacles to restructuring energy pro-
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duction in the industrialized world. An example of such could be the infrastructure 
built around petrol- and oil use, where the value of having a petrol-driven car or 
any other type of oil-consuming technical devise increases if many other people 
are also using the same type of technology. The necessary technological support 
and infrastructure will be more widespread as a consequence. Energy systems also 
exhibit a strong characteristic of lock-in1 to established technologies, caused by 
factors such as economies of scale, market-place barriers, accumulated learning- 
-by-doing and learning-by-using of established technologies. Finally, energy sys-
tems tend to involve large-scale products and investments which last decades. 
For all these reasons energy systems themselves may be highly path dependent 
– future economic possibilities depend on previous decisions and patterns of in-
vestment. According to Neuhoff [2005], the abovementioned properties are the 
theoretical justification for many of the renewable energy policy measures that 
have been in use in the last 25 years. Up-front capital subsidies or investment 
tax deductions provide public financial support for the initial investment which 
otherwise would not be undertaken since investors discount rates are too high 
for renewable energy projects to break even. Contracts ensuring stable energy 
prices guaranteed at the level of retail tariffs (feed-in tariffs) also remove or al-
leviate some uncertainty bias. Public funding or subsidizing also mitigate the 
disproportionately high transaction costs for risk management tools which result 
from small-scale properties that often signify renewable energy projects. Neuhoff 
[2005] also emphasized that as technologies improve and the scale of deploy-
ment increases, it is of importance to support the actual power produced rather 
than the investments, in order to reward performance instead of simply installed 
capacity.

Different categories of implemented policies have been identified, e.g., ge-
neral framework policies, direct short-term investment subsidies or R&D support. 
Some are designed to target renewable energy in general while others are aimed 
specifically at bioenergy. Empirically, there are only a few studies that have analysed 
the impact of energy and climate policies on the innovative performance of renewable 
energy [e.g. Walz et al. 2008; Johnstone et al. 2010; Noailly, Batrakova 2010; 
Rübbelke, Weiss 2011]. The general finding is that certain policies are more effec-
tive than others depending on energy technology. Targeted subsidies such as feed-
-in tariffs are more efficient in stimulating innovations in newly-emerged and less 
developed technologies with high operating costs, while more general policies such 
as quota obligations with tradable green certificates stimulate innovations in mature 
technologies that have already been subject to innovation and learning-by-doing 
cost improvements [Johnstone et al. 2010] – the latter in particular as producers 
always seek to comply with a regulation in the cheapest possible way. Since bio-

1 Lock-in is closely related to path dependence. See for example Arthur et al. [1987] or 
David [2001] for a detailed explanation of the concept.
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energy comprises many different technologies with varying degrees of maturity, it 
could be argued that both feed-in tariffs as well as quotas might be determinants 
of innovation for this energy field.

Feed-in tariffs (FIT) in this study were defined as they were by Sijm [2002] as 
“the regulatory, minimum guaranteed price per kWh that an electricity utility has 
to pay to a private, independent producer of renewable power fed into the grid”2. 
The extra cost of the guaranteed price is in most policy regimes passed 
on to consumers via the electricity bill. Fig. 2 depicts the development of the 
average feed-in tariff for the sample countries and for the time period 1978–2010. 
The first feed-in tariff was introduced in 1991 in Germany, Switzerland and the 
UK, and had an average value of 0.021 USD per kWh (at 2005 prices). By 2010, 
the average feed-in tariff had risen by 319% to 0.088 USD per kWh (at 2005 prices) 
[Cerveny, Resch 1998; IEA 2011, 2013].
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Fig. 2. Average feed-in tariffs and countries with RPS schemes between 1978 and 
2009 for sample countries

Source: IEA [2011]

Two countries where feed-in tariffs have been used intensively are Germany 
and Spain. These countries are also representative of the different ways to im-

2 The levels of feed-in tariffs are sometimes based on avoided costs of using non-renewable 
power when generating electricity and sometimes the feed-in tariffs may be fixed without any 
direct relation to the avoided costs. Feed-in tariffs may be guaranteed for certain time periods 
and are sometimes differentiated with respect to renewable energy technologies such as solar 
photovoltaic, biomass and wind [Sijm 2002; Campoccia et al. 2009]. Moreover, sometimes the 
tariffs may also be differentiated on the basis of when (time or season) the electricity is fed 
into the grid.
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plement feed-in tariffs. In Germany, the fixed price tariff has mainly been used. 
Under this design, the renewable energy producer is guaranteed a settled remuner- 
ation per kWh fed into the grid. Fixed tariffs can be adjusted to inflation or have 
a fixed nominal value. The latter suggests that the value of the tariff will be reduced 
over time. This diminution could be further increased by an annual discount off 
the tariffs, the so-called front-end loaded tariff, which is the system that was used 
in Germany between 2000 and 2009 [Busch et al. 2010; Couture, Gagnon 2010; 
IEA 2011, 2013]. In Spain, the premium price tariff has been a commonly used me-
chanism to reward renewable energy production. Under this policy, a premium is 
paid in addition to the market price for electricity. These market-dependent feed-in 
tariff schemes come with a set of different features. The simplest form is the premium 
price model which offers a constant premium on top of the market price. A more 
modern tariff construction used in Spain today is the variable premium tariff where 
the premium varies within certain boundaries according to the market price. The pur-
pose of this construction is to avoid windfall profits in the case of sharply increasing 
market prices, but also to reduce risk in the event that the market price drops heavily 
[Couture, Gagnon 2010]. A feed-in tariff does not necessarily mean that the guaran-
teed payment to a renewable energy producer has to be higher than the prevailing 
market price at every single moment in time. The first feed-in tariff in Germany, the 
electricity feed-in tariff law 1991, based its level of remuneration on a percentage of 
the mean market price of electricity for the previous year. Denmark and Spain also 
used this type of policy construction earlier. Due to the great element of randomness 
in this remuneration scheme, it has today been abandoned in favor of other more up-
-to-date tariff designs [Couture, Gagnon 2010].

Quota policies are often deployed in the form of renewable portfolio stan-
dards (RPS). A quota is set for the amount of renewable energy within the total 
energy production, which energy distributors are obliged to fulfill. This policy 
is sometimes combined with a certificate trading regime called tradable green 
certificates (TGC). In a TGC scheme, the quota can be fulfilled either through 
renewable energy production (in cases where utilities produce their own ener-
gy) or by buying certificates from an external accredited generator [IEA 2004]. 
As with the feed-in tariffs, the cost of certificates (in the instance of non-renew-
able energy generation) is ultimately born by the electricity consumers. Often 
a TGC regime guarantees a minimum buy-back price of the certificates if an ex-
cessive amount of renewable energy were to be produced for the regular market. 
In fig. 2 the number of countries within the sample using quota policies is pre-
sented. Renewable portfolio standards and quota policies were introduced later 
than feed-in tariffs. They were first implemented in Austria in 2001 and nine years 
later RPSs were also implemented in Belgium, Italy, Japan, Sweden and the UK 
[IEA 2011].

Investment support policies could for example be grants or low-interest loans 
provided to cover the investment costs of bioenergy production capacity. In some 



49Bioenergy innovations and their determinants: a negative binominal count data analysis

instances, investment support schemes cover the whole investment cost. How-
ever, it is more usual that the support only covers a certain percentage of the total 
investment cost [IEA 2004, 2011]. Investment support programs could also be 
directed towards research and demonstration facilities with the purpose of helping 
immature technology become commercially viable. These schemes are an older 
type of subsidy than feed-in tariffs and RPS, and are quite common in the bioene-
rgy sector. Investment support programs are not a feature of liberalized energy 
markets in the same way as feed-in tariffs or RPS policies, even if an investment 
policy by definition does not exclude a design targeted towards production ef-
ficiency instead of pure installation. A distinction between R&D policies and in-
vestment support should also be made. Public subsidies of R&D activities without 
investment in physical production capital were not defined as investment support 
policies in this study. The first investment policies were implemented (among the 
sample countries) in Denmark with its Act on support for the utilization of renew-
able energy sources starting in 1981, and shortly after in Italy in 1982 with the 
308/82 law (1982–1989). The Italian 308/82 law enabled public investment of 113 
million USD in 295 different renewable energy projects between 1982 and 1989. 
The support scheme did not have a big impact on renewable energy markets due 
to the modest scale of the financial resources and the highly bureaucratic man-
agement of the programs [IEA 2004]. Germany started its Support of the federal 
states scheme in 1985. This program is managed by the federal states (Länder) in 
Germany and regional differences could be large. Regional support in Germany 
is often sector specific, e.g. it could be targeted towards the agricultural sector or 
a specific industry. Solar PV and biogas systems have been prioritized technol-
ogies in these regional support programs [IEA 2011]. By the late 90s, different 
support schemes were in use in most of the sample countries. Until the middle of 
the first decade of the 2000s, countries such as Canada and Finland relied entirely 
on investment support schemes for the bioenergy sector [IEA 2004]. In Canada, 
a prominent support scheme for bioenergy is the ecoEnergy program and 
in Finland the Biorefine technology programme for new biomass products. 
The Canadian ecoEnergy program is a compilation of various support schemes, 
targeted towards different types of bioenergy such as biomass use in power gen-
eration or biofuels for the transportation sector. The Finnish Biorefine technology 
programme for new biomass products was introduced in 2007 and supports pilot 
and demonstration plants, the development of innovative new products and co-
operation between companies from different industrial clusters for innovation in 
biomass technology [IEA 2011].

Empirically, investment support schemes have not shown any significant impact 
on innovation in bioenergy but were a significant determinant for waste-to-energy 
technology in the study by Johnstone et al. [2010], a technological field which to 
some extent is included in the definition of bioenergy in this study by the inclusion of 
e.g. landfill gas-technology.
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Model specification

In order to model innovation, a distinction has to be made between technological 
innovation and economically useful innovations in general [Jaffe et al. 2000]. 
The latter need not necessarily implicate new technology, but could be new orga-
nisational forms or even more efficient societal planning. In this study, the former 
definition was used.

A cornerstone of the modern theory of technological change is the trichotomy 
defined by Schumpeter [1934] where the process of technological change consists 
of three stages: (1) Invention which is the actual development of a new product 
or process and is normally what is intended when the word innovation is used in 
its more general sense. Some of the inventions may be patented while some are 
not; (2) Innovation is the commercialization of the new product i.e., it is made 
available for sale on the market and; (3) Diffusion is when an innovation becomes 
widely adopted by various economic agents.

The model specification, represented by equation (1), included three vectors 
of different types of determinants, quantified either as discrete or continuous:

Ii,t = f (Ai,t, Di,t, Pi,t) (1)

The specification stipulated that the count of bioenergy patents (I) in country 
i and time period t could be explained by a vector of policy variables (A), vector 
of supply-side R&D variables related to technical opportunity (D) and a vector 
containing the demand-side market variables (P).

The policy vector (A) included three major policy groups: feed-in tariffs 
(FIT), renewable portfolio standards (RPS) (i.e. renewable energy quotas) and 
investment subsidies. Tax policies were not explicitly included in the specifica-
tion even though they are a fairly common policy instrument. The reason for that 
was the lack of reliable disaggregated data on tax policies used in the sample 
countries. The vector of RD&D variables (D) included two variables checking for 
the propensity to patent and the technical opportunity for bioenergy innovation. 
The vector of market variables (P) contained total energy consumption, the mar-
ket price of electricity and the relative price between roundwood and light fuel oil.

For a proper estimation of the number of occurrences of an event, count data 
models such as the Poisson or negative binomial model have been suggested 
[Cameron, Trivedi 1998]. An event count is formally defined as a realization of 
a non-negative integer-valued random variable. In this model, an event count is 
the number of patent applications for each country respectively each year. It is 
assumed that the patent counts (Ii,t) follow a negative binomial distribution. Since 
it was quite likely that the countries investigated would differ substantially in their 
country-specific characteristics, the fixed-effects negative binomial model sug 
gested by Allison and Waterman [2002] was used in this study. That is, a negative 
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binomial model with country-fixed effects was used for an estimation of equation (1). 
The downside was that it was not ruled out that the estimates would suffer from an 
incidental parameters problem3. The alternative was to use the fixed effects-model 
by Hausman et al. [1984], but since the conditional mean function would still be 
homogeneous in that model, instead there would have been what Greene [2007] 
names a “left-out variable problem”.

The specification of the negative binominal model is given by equation (2) 
and (3). E(Iit) was the expected value (i.e. the mean) of the patent counts and β was 
a vector of coefficients. A, D and P were the vectors of determinants of innovation 
in the model and C was the country-fixed effects.

E(Iit) = uexp(x'itβ) (2)

where:

x'itβ = α + β1Ait + β2Dit + β3Pit + δCi (3)

The error term u = exp(εit) was assumed to be gamma distributed.

Data

Fourteen countries in total were included in the sample (Austria, Belgium, Canada, 
Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Spain, Sweden, 
Switzerland and the United Kingdom) constituting an unbalanced panel dataset 
for the time period 1978–2009. The data on patents and the control variables was 
obtained from the OECD. The data used in the construction of the policy vec-
tor was collected from IEA [2004, 2011, 2013] and Cerveny and Resch [1998]. 
Moreover, various international governmental organizations and websites were 
consulted to extend and control the accuracy of the data used to construct the 
policy vector. Information on feed-in tariff levels and renewable energy quotas 
for specific years and countries was gathered from the latter sources in the case of 
missing information in the IEA database. 

Patents filed under the Patent Cooperation Treaty (PCT)4 were used as the 
PCT does not have the same problem of home bias as a simple count of applica-
tions made at the national patent offices might have. Furthermore, it does not have 
the same problems with weak timeliness, i.e., a very long delay between applica-
tion and publishing that could prevail under other filings [OECD 2009]. The PCT 
also contains longer time-series without structural breaks than other comparable 
filings. Patents filed under the PCT are defined as applications sorted according to 

3 The incidental parameters problem arises in cases where the number of parameters in- 
creases with the number of observations, e.g. in short panels and n is increased by adding 
more cross-sectional units using individual fixed effects. This could make the estimator 
inconsistent [Neyman, Scott 1948].

4 An alternative filing is the Triadic patent families.
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the inventor’s country of residence and priority date (earliest date in the applica-
tion process). This chosen definition of included patents is based on recommen-
dations made by OECD [2009]. The patent sample consisted of biofuel- and fuel 
from waste technologies given by the ECLA-classification system created by the 
European patent office (ECLA Y02E50/10 up to Y02E50/346 classes) and was 
obtained from the OECD Statistics database [2013]. In cases where total patents 
for a country and year were reported as a fraction (when several countries share 
the credit for a patent), it was rounded off to the nearest integer.

Following Moore and Ihle [1999], that a program for financial assistance must 
remain stable for at least ten years, two feed-in tariff variables were therefore 
constructed for this study: one for contracts of a minimum of 10 years or longer, 
and another for contracts shorter than 10 years. The feed-in tariffs were measured 
as continuous variables defined as USD per kWh (2005 value). The FIT variables 
were defined annually after an enactment or change in level. In instances when 
a policy was in use at the beginning of the year that it was first enacted, it was 
considered enabled the following year. This was based on the assumption that 
inventors react to active policies actually in use. In order to construct the FIT va-
riables in a symmetric manner, policies abolished before the end of a given year 
were still counted as in use for that year. In most countries there was no uniform 
tariff level even within the same technology group. For instance, remuneration 
levels differed depending on the biofuel technology type and on the size of plant 
and policy design in use in a certain year. To account for this, the feed-in tariffs 
were calculated as a weighted average of the different relevant and comparable ta-
riffs in use in each year. If the technology base eligible for support was broadened 
or narrowed over time, in a sense that would change the mean level of tariffs to 
a non-comparable measurement unit, these specific technologies were not in-
cluded. An example of this was the British NonFossil Fuel Obligation scheme 
(NFFO) where the fuel base eligible for support has been redefined several times 
during the existence of the program. As in the research by Rübbelke and Weiss 
[2011], tariff levels were also discounted with the stated yearly percentage if ta-
riffs were constructed as descending by the regulator (e.g., in Germany).

The RPS variable was continuous, defined as the percentage of obliged re-
newable energy within total energy production while a RPS policy was active. 
The RPS was counted as active if they were in use before 1st July of a given year.

Investment subsidies were measured as annual total funding (2005 USD value) 
of a specific program. In the instances where the data on the annual budget was 
not available, it was assumed that the total initial funding of a certain program was 
exhausted within five years. The reason for choosing a 5-year limit was that when 
time limits are explicitly mentioned in policy descriptions, five years is usually the 
timeframe used [IEA 2011]. Due to a lack of information, it was not possible to 
include some policies in the continuous investment variable, however these policies 
were taken into account by a cardinal interval variable which measured the total 
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number of investment support policies in use for a specific year and country. Since 
these programs could target different sectors of the economy and could be more or 
less effective, they were divided into three separate variables; strong policies, weak 
policies and policies directly aimed at the household or residential sector. Cardinal 
investment policies were assessed as strong if they were directly targeted towards 
renewable energy production, either in power generation or the production of bio-
energy. On the other hand, if a policy only provided a little support, e.g. soft loans 
to renewable energy projects but with risk-adjusted high rents close to what should 
have been the level if negotiated on the open market, it was categorized as weak. 
Furthermore, if it was unclear whether an explicit renewable energy policy was 
relevant at all for bioenergy, it was also classified as weak. The latter also applied 
to policies otherwise categorized as residential sector policies. When an investment 
policy overlapped two categories, it was then recorded as a fraction for each group. 
Table 1 summarizes the process in which the policy variables were constructed.

Table 1. Description and sources of data used

Type of 
variable Data Source Processing by authors

Dependent 
variable

Patent data OECD [2013] None, compiled at the OECD. 
Originally data originates from 
the European Patent Office

Policy 
variables 
(independent 
variables)

Policy description IEA [2004], IEA 
IRENA database 
[2011, 2013]. 
Cerveny and 
Resch [1998]. 
Governmental 
and bioenergy 
organizational 
websites*

Quantification of investment 
support data and computation 
of yearly mean feed-in tariff 
levels made by authors. 
In some cases (i.e. Japan) 
computation of effective quota 
levels for the RPS have also 
been made by the authors since 
explicit information regarding 
these have not been available

Control 
variables 
(independent 
variables)

Prices on energy, 
biomass and 
electricity. Total 
numbers of 
patents and yearly 
bioenergy RD&D. 
Total energy 
consumption 

FAO [2013], OECD 
[2013]

Accumulated RD&D stock 
computed by summation of 
yearly expenses on bioenergy 
research

* France: FOGIME – http://www.muredatabase.org/
Belgium: Res Regulation – http://www.resregulation.gr/bibliography/
Canada: CBSA – http://www.cbsa-asfc.gc.ca
The Netherlands: SDE – http://www.energy.eu/
Japan: MoE – http://www.meti.go.jp/english/policy/energy_environment/renewable/index.html
General: http://fxtop.com/en/; http://faostat3.fao.org/
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In the RD&D vector (D), the propensity to patent was measured by the total 
number of patent counts under the PCT, aggregated over all technological areas. 
Thus the bioenergy patent was related to the overall trend in patenting in a given 
country. It also checked for differences in size and research capacity of the coun-
tries. This variable was expected to have a positive sign in the regression. Techno-
logical opportunity was approximated by the accumulated knowledge stock con-
structed using a country`s aggregated (public) RD&D expenditures on bioenergy 
technology. RD&D expenditures were measured in 2012 USD and retrieved from 
the OECD [2013]. The accumulated knowledge stock was built in a similar way 
to the work by Söderholm and Klaasen [2007] and was defined as:

STOCKi,t = (1 − δ)STOCKi,t-1 + RD&Di,t-x (2)

where: STOCK – the accumulated knowledge stock,
δ – the rate of depreciation,
x – the time lag before R&D expenditures was added to the knowledge stock.

According to Klaasen et al. [2005] a time lag of two years (x = 2) and a depre-
ciation rate of 3% (δ = 0.03) is reasonable.

The data for national RD&D expenditures had some missing observations 
which could not be omitted since it would have made construction of the know-
ledge stock impossible. In those instances, the methodology of linear interpolation 
employed in Jaunky [2009] using the mean of the observations before and after 
the missing observation was used to complete the series.

The demand-side factors included in vector (P), contained the electricity pri-
ces and the relative price between roundwood and light fuel oil. This price ratio 
served as a proxy for the relative price between biomass and other important fossil 
fuel prices. The reason for the choice of light fuel oil as proxy and not a broad 
index on oil prices was due to the limited data availability. Moreover, a variable 
on total energy consumption was included to check for the size of the energy 
market – higher energy consumption meant that there were greater potential sales 
for energy technology and therefore larger incentives to innovate. The electricity 
price was retrieved from IEA [2013] and was expressed in USD per kWh (2005 
value). Total energy consumption was measured in TWh and originated from the 
OECD Statistics Database [2013]. In order to account for the aforementioned he-
terogeneity amongst the sample countries, 13 dummy variables5 were added to 
the regression equation. This was in line with the methodology of the Allison and 
Waterman [2002] fixed-effects model.

Finally, in 1994 the Agreement on Trade-Related Aspects of Intellectual Pro-
perty Rights (TRIPS) was negotiated which was expected to have had an impact 
on the patenting behaviour in the countries included in the sample. With TRIPS, 
intellectual property law was first introduced to the international trading system 

5 The dummy for Austria was excluded to avoid perfect multicollinearity.
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and is still the most extensive international agreement on intellectual property so 
far introduced. An additional dummy was included in the regression to distinguish 
between pre- and post-TRIPS patenting activity. This dummy took the value of 
1 from 1995 onwards.

Results and discussion

Theoretically, it was possible that patenting was affected by a time lag, therefore 
several model specifications containing lagged independent variables were tested 
in order to decide upon a feasible first specification of the model. One variable did 
improve the model when it was lagged – the relative price between roundwood 
and light fuel oil. To test if the binomial count model was appropriate, a disper-
sion test was conducted. The test indicated that the data was overdispersed, and 
therefore the negative binomial model was appropriate. The regressions were con-
ducted using bootstrapping since normal robust standard errors could have been 
unreliable in the presence of outliers; moreover, these are more likely to influence 
the standard errors in smaller samples [Cameron, Trivedi 1998].

The econometric results were deemed statistically-reliable and nothing in the 
chosen estimation technique or model specification warranted further scrutiny. The 
patent data reliability was, however, harder to validate. This was not in terms of its 
source, but rather since it was difficult to validate that each patent was exclusively 
related to bioenergy technologies. The results were applicable to several issues and 
areas. Since the focus was on the effect energy and climate policies had on bioener-
gy innovation activity, the foremost area of applicability was in policy formulation. 
That is, based on the results, policy-makers could better assess different policy 
options if they desired to stimulate bioenergy innovation in their climate agenda.

The result of the regression is given in table 2. The results regarding the policy 
variables were diverse. Both variants of feed-in tariffs were statistically signifi-
cant, with a positive impact on innovation. In addition, the cardinal variable for 
the strong investment policies was statistically significant with a positive sign. 
The other policy variables, such as quota obligations (RPS) or other different 
measures of investment support schemes were not statistically significant.

The demand-side variables (total energy consumption, electricity prices and 
the relative prices for roundwood versus light fuel oil) were all statistically signi-
ficant. The supply-side variables measuring total research capacity, propensity to 
patent and technological opportunity for innovation were statistically significant 
with an expected positive sign. The time period after the negotiation of the TRIPS 
agreement also had a significant impact on patenting in biofuel technology, indi-
cating that it could lead to biased conclusions regarding policies if this variable 
were omitted. A variety of interaction variables checking for interaction effects 
between the independent variables were also tested, none of them being statisti-
cally significant.
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Table 2. Estimated coefficients of the negative binomial model with country fixed 
effects

Variable Elasticity P > z Elasticity 
lower bound

Elasticity 
higher bound

Total PCT 0.150** 0.033 0.012 0.288
Investment support (continous) 0.010 0.494 -0.019 0.039
Strong investment policies 0.127** 0.029 0.013 0.241
Weak investment policies 0.009 0.696 -0.037 0.056
Household investment p. 0.019 0.467 -0.031 0.068
RPS 0.025 0.152 -0.009 0.059
Feed-in tariffs A (longer agreement) 0.172*** 0.000 0.101 0.242
Feed-in tariffs B 0.072*** 0.003 0.024 0.119
Energy consumption (market size) 2.394*** 0.002 0.868 3.921
Accumulated bioenergy knowledge 
stock 0.439** 0.014 0.087 0.790

Electricity price 0.871*** 0.001 0.365 1.378
Lagged relative price: roundwood/
light fuel oil -0.332*** 0.003 -0.549 -0.115

TRIPS 0.284*** 0.004 0.089 0.479
Country dummies 14 DV
Log-likelihood -619.705
Chi-squared (prob) 52.40 (0.000)
n = 373

* 10% significance, ** 5% significance, *** 1% significance

The correlation between the independent variables was also inspected in order 
to check for multicollinearity. In the first specification, the correlation between the 
weak investment policy variable and total PCTs was 0.63 and therefore a regres-
sion was estimated where it was omitted, but the significance and sign of the other 
independent variables remained robust.

However, the assumption that the various investment support programs con-
tained in the three cardinal interval variables had the same impact on innovation 
could be called into question. Therefore, a set of binary dummy variables for each 
of the three cardinal investment support variables was constructed and substituted 
for the cardinal variables. This represented other relevant investment policy 
support which, however, was impossible to quantify in the continuous variable. 
The results from that regression coincided with those of the first specification. 
Finally, a single dummy variable was constructed substituting all the cardinal va-
riables. The dummy was significant with a positive sign and once again the same 
results were obtained regarding the other independent variables. Arguably, this 
confirmed the robustness of the result from the first specification. 
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It was possible that the ambiguous effect of the investment support schemes 
could have been a result of the method used in the quantification of the inve-
stment support variable. The continuous variable consisted of many diffe-
rent types of investment support programs, such as measures aimed directly at 
bioenergy investment, but also at renewables in general. Therefore, a further 
disaggregated continuous investment support variable was constructed in order 
to investigate whether a smaller subset of the policies had an impact on inno-
vation in bioenergy. The new categories were: bioenergy investment support 
(mainly in power and large-scale heat generation), investment support against 
renewables in general, and support for renewable energy in the household and 
residential sector. It should be mentioned that the categorization was not ana-
logous to the classification of the cardinal interval variable for the investment 
support programs impossible to quantify continuously. However, in the regres-
sions using these new classifications, it was found that none of them was statis- 
tically significant and, therefore, the result from the first specification remained 
unchanged.

Another reason why RPS schemes and investment support programs did not 
show any significant effect could have been the somewhat broad definition of 
the dependent variable; bioenergy is a fairly diversified energy field and consists 
of many types of technology. Some of the policy programs might have affected 
innovation in a narrow field of bioenergy technology, but the patent classes used 
in the study were too diversified to enable the detection of such an effect in the 
regressions. Information on the policies in the IEA database was also in some 
cases quite vague regarding the scope and magnitude of the support targeted to bio-
energy specifically, which made it harder to assess the relevance of the investment 
support schemes than in the case of the levels of feed-in tariffs. The investment 
support variable may therefore have contained a higher share of noise than the 
other policy variables.

The strongest impact on patenting in biofuel technology was given by total 
energy consumption with an elasticity of 2.39, which means that if energy con-
sumption rose by 1%, patenting would increase by 2.39%. Other demand-side 
factors, such as the electricity price and the lagged relative price between round- 
wood and light fuel oil, had an elasticity of 0.87 and -0.33, respectively. Regard- 
ing supply-side factors, the accumulated knowledge stock had quite a strong 
effect, with an elasticity of 0.44. The feed-in tariffs had an elasticity of 0.17 and 
0.072, respectively. The tariff associated with a contractual agreement longer than 
10 years had more than double the impact of the feed-in tariff negotiated on shor-
ter terms, which was in line with the theoretical assumptions regarding feed-in 
tariffs. The elasticity for the strong investment policies was 0.127; the finding that 
only the strong investment support variable was statistically significant supported 
the division of the cardinal investment variable into several variables of different 
relevance.
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The results were to some extent contradictory to the earlier assessments by 
Johnstone et al. [2010] who did not find any effect of feed-in tariffs on innovation 
in the bioenergy field. Investment support schemes had a significant impact in that 
study but the support was only measured as a binary dummy, which is consistent 
with the statistically-significant and positive effect of the strong investment pol- 
icies in this study. Quota obligations did not have a statistically significant effect 
in either of the studies.

In order to test how sensitive the results were to the assumed depreciation 
rate (3%) and lag structure (2 years) for the knowledge stock variable, 
a sensitivity analysis was carried out. Table 3 presents the regression results based 
on 2% and 4% depreciation rate and a one and 3-year lag structure. The sensitivity 
analysis is presented as a percentage change to the results in table 2. As table 3 
indicates, the results were relatively robust to minor changes in the parameters 
used to construct the knowledge stock variable. No important change in the sign 
or significance of the variables used was detected.

Table 3. Sensitivity analysis of depreciation rates and lags in the construction of the 
knowledge capital stock. Change in estimated coefficients compared to the base mo-
del in percentage points

Variable
2% 

depreciation 
rate

4% 
depreciation 

rate
2-year lag 4-year lag

Total PCT -0.5** -0.5** -9.5** 8.6**
Investment support 
(continous) -1.2 -1.2 -23.8 14.3

Strong investment policies 0.4** 0.0** -5.7** 3.1**
Weak investment policies -5.0 12.7 7.9 4.2
Household investment p. -6.3 -1.7 -45.1 3.1
RPS -9.8 13.3 -1.6 7.6
Feed-in tariffs A 
(longer agreement) 0.1*** 0.6*** -1.9*** 2.5***

Feed-in tariffs B 2.6*** 4.4*** -3.4*** 7.4***
Energy consumption 
(market size) -3.4*** 4.5*** -0.8*** 0.3***

Accumulated bioenergy 
knowledge stock -4.3** 6.7** 17.3*** -6.1**

Lagged relative price: 
roundwood/light fuel oil -0.5*** -0.1*** -5.9*** 2.8***

Electricity price -3.4*** -1.7*** -12.2*** 0.6***
TRIPS -1.7*** 0.3*** -1.4*** -1.5***
Country dummies 14 DV 14 DV 14 DV 14 DV

Significance of estimated coefficients: * 10% significance, ** 5% significance, *** 1% significance
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Conclusions

This study investigated the determinants of bioenergy innovations with a special 
focus on the effect of energy and climate policies, within a sample of 14 coun-
tries between 1978 and 2009. Innovation was approximated by patent counts, and 
a vector of different disaggregated policy measures was included, together with 
a set of market and R&D variables in order to assess their impact on innovation. 
An inspection of the development of the number of patents and the amount of 
support targeted towards renewable energy during the investigated time period 
suggested that these programs played an important role in technological change 
in the biofuel sector.

The econometric results indicated that policies such as feed-in tariffs and 
investment support programs had a statistically-significant and positive impact 
on innovation in bioenergy technology. Renewable energy quotas failed to have 
a significant effect on innovation in this study. Market variables such as total en- 
ergy consumption and electricity prices also had a significant, positive effect 
on innovation. Higher roundwood prices relative to light fuel oil had a negative 
effect. The variables representing technological opportunity for innovators and 
over-all research capacity of a given country (measured by accumulated RD&D 
expenditure on biofuel technology and total patent counts over all technology 
groups), did show a positive and significant effect on innovation as well, which 
was in line with the theoretical assumptions of the model.

The economically most noteworthy result of the study relevant for policy- 
-makers was that innovation was significantly driven by electricity prices. Policy 
measures such as feed-in tariffs and certain investment support schemes also played 
a role in the development of bioenergy technology. Thus, these findings suggest 
a combination of measures that internalize the negative external effects of power 
production and properly designed support programs in order to further increase 
the rate of innovation in biofuels, which will hopefully make bioenergy a fully 
cost-competitive substitute for traditional fossil fuels.
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