PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Preliminary study of electricity generation and sulfate removal performance in a novel air-cathode microbial fuel cell (AC-MFC) using laccase-producing yeast as a biocatalyst

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fungi produce various types of extracellular enzymes, including the copper-containing oxidative enzyme laccase. This enzyme uses gaseous oxygen (O₂) as an electron acceptor to catalyze oxidation of phenolic compounds, and therefore it can act as a cathode biocatalyst in a microbial fuel cell (MFC). In this study, a new model of the air-cathode microbial fuel cell (AC-MFC) was constructed. For its design, the laccase-producing yeast Galactomyces reessii cultured in potato dextrose agar was grown in the cathode chamber, and an anaerobic microbial community was maintained in the anode chamber in order to carry out sulfate removal and, simultaneously, generate electricity. Results showed that the cathode with G. reessii outperformed the cathode with sterile gel (negative control), yielding the maximum open circuit voltage of 550.65±14.92 mV, the maximum power density of 0.35±0.01 mW/m³, the maximum current density of 225.69±17.25 mA/m³ and sulfate removal of 73.29±1.31%. This study demonstrated the feasibility of using a yeast culture for continuous laccase production in the cathode chamber of the AC-MFC in order to improve their electricity generation and sulfate removal.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3099-3104,fig.,ref.

Twórcy

autor
  • Department of Biotechnology, Faculty of Science, Thaksin University, Phatthalung, Thailand
autor
  • Department of Civil and Environmental Engineering, College of Science and Engineering, Idaho State University, Idaho, USA
autor
  • Department of Civil and Environmental Engineering, College of Science and Engineering, Idaho State University, Idaho, United States
  • Department of Microbiology, Faculty of Science, Thaksin University, Phatthalung,Thailand
autor
  • Department of Food Science and Technology, Faculty of Agro and Bio Industry, Thaksin University, Phatthalung, Thailand

Bibliografia

  • 1. APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed. In APHA, AWWA, WEF, Washington DC, USA. 1998.
  • 2. BARTON S.C., PICKARD M., VAZQUEZ-DUHALT R., HELLER A. Electroreduction of O₂ to water at 0.6V (SHE) at pH 7 on the wire Pleurotus ostreatus laccase cathode. Biosensors and Bioelectronics, 17 (12), 1071, 2002.
  • 3. CELIS-GARCIA L.B., GONZALEZ-BLANCO G., MEREZ M. Removal of sulfur inorganic compounds by a biofilm of sulfate reducing and sulfide oxidizing bacteria in a down-flow fluidized bed reactor. Journal of Chemical Technology & Biotechnology, 83 (3), 260, 2008.
  • 4. CHAIJAK P., LERTWOPREECHA M., SUKKASEM C. Phenol removal from palm oil mill effluent using Galactomyces reessii termite-associated yeast. Polish Journal of Environmental Studies, 27 (1), 39, 2018.
  • 5. FISHILEVICH S., AMIR L., FRIDMAN Y., AHARONI A., ALFONTA L. Surface display of redox enzymes in microbial fuel cells. Journal of American Chemical Society, 131 (34), 12052, 2009.
  • 6. KACEM S.H., GALAI S., DE LOS RIOS A.P., FERNANDEZ F.J.H, SMAALI I. New efficient laccase immobilization strategy using ionic liquids for biocatalysis and microbial fuel cells applications. Journal of Chemical Technology and Biotechnogy, 93 (1), 174, 2018.
  • 7. LAI C.Y., LIU S.H., WU G.P., LIN C.W. Enhanced bio-decolorization of acid orange 7 and electricity generation in microbial fuel cells with superabsorbent-containing membrane and laccase-based bio-cathode. Journal of Cleaner Production, 166 (1), 381, 2017a.
  • 8. LAI C.Y., WU C.H., MENG C.T., LIN C.W. Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode. Applied Energy, 188 (15), 392, 2017b.
  • 9. LEE H., JANG Y., CHOI Y.S., KIM M.J., LEE J., LEE H., HONG J.H., LEE Y.M., KIM G.H., KIM J.J. Biotechnological procedures to select white rot fungi for the degradation of PAHs. Journal of Microbiological Methods, 97 (1), 56, 2014.
  • 10. LENS P.N.L., VISSER A., JANSSEN A.J.H., POL L.W.H., LETTINGA G. Biotechnological treatment of wastewater. Critical Reviews in Environmental Science and Technology, 28 (1), 41, 1998.
  • 11. LIN C.W., WU C.H., LIN Y.Y., LIN S.H., CHANG S.H. Enhancing the performance of microbial fuel cell using a carbon-fiber-brush air cathode with low-cost mushroom Ganoderma laccase enzyme. Journal of the Taiwan Institute of Chemical Engineers, 85 (1), 115, 2018.
  • 12. LOGAN B.E., RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial fuel cell electrochemical technologies. Science, 337 (1), 686, 2012.
  • 13. MANI P., KESHAVEZ T., CHANDRA T.S., KYAZZE G. Decolourisation of acid orange 7 in a microbial fuel cell with laccase-based biocathode: Influence of mitigating pH changes in the cathode chamber. Enzyme and Microbial Technology, 96 (1), 170, 2017.
  • 14. MIRAN W., JANG J., NAWAZ M., SHAHZAD A., JEONG S.E., JEON C.O., LEE D.S. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper. Chemosphere, 189 (1), 134, 2017.
  • 15. MOHAMMADI M., MAN H.C., HASSAN M.A., YEE P.L. Treatment of wastewater from rubber industry in Malaysia. African Journal of Biotechnology, 9 (38), 6233, 2010.
  • 16. PINAR O., KARAOSMANOGLU K., SAYER N.A., KULA C., KAZAN D., Sayer A.A. Assessment of hazelnut husk as a lignocellulosic feed stock for the production of fermentable sugars and lignocellulolytic enzymes. 3 Biotech, 7 (6), 1, 2017.
  • 17. POZDNYAKOVA N.N., RODAKIEWICZ-NOWAK J., TURKOVSKAYA O.V., HABER J. Oxidative degradation of polyaromatic hydrocarbons and their derivatives catalyzed of polyaromatic hydrocarbons and their derivatives catalyzed directly by the yellow laccase from Pleurotus ostreatus D1. Journal of Molecular Catalysis B: Enzyme, 41 (2), 8, 2006.
  • 18. SEO Y., KANG H., CHANG S., LEE Y.Y., CHO K.S. Effects of nitrate and sulfate on the performance and bacterial community structure of membrane-less single-chamber air-cathode microbial fuel cells. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 53 (1), 13, 2018.
  • 19. SHIBATA M., KATO M., IWAMOTO Y., NOMURA S., KAKIUCHI T. Potentiometric deter mination of pH values of dilute sulfuric acid solutions with glass combination electrode equipped with ionic liquid salt bridge. Journal of Electroanalytical Chemistry, 705 (1), 81, 2013.
  • 20. SUDARSAN J.S., PRASANA K., NITHIYANANTHAM S., RENGANATHAN K. Comparative study of electricity production and treatment of different wastewater using microbial fuel cell (MFC). Environmental Earth Science, 73 (5), 2409, 2015.
  • 21. VILLAVERDE S., LACALLE M., GARCIA-ENCINA P.A., FDZ-POLANCO F. Nitrification- denitrification of UASB effluents highly loaded with nitrogen in an activated sludge reactor operated with short cycled aeration. Water Science & Technology, 44 (4), 279, 2001.
  • 22. WANG A.J., DU D.Z., REN N.Q., GROENESTIJN J.W. An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans. Journal of Environmental Science and Health, Part A, 40 (10), 1939, 2005.
  • 23. WU C., LIU X.W., LI W.W., SHENG G.P., ZANG G.L., CHENG Y.Y., SHEN N., YANG Y.P., YU H.Q. A white-rot fungus is used as a bio-cathode to improve electricity production of a microbial fuel cell. Applied Energy, 98 (1), 594, 2012.
  • 24. WU H., FU Y., GUO C., LI Y., JIANG N., YIN C. Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater. Bioresource Technology, 260 (1), 130, 2018.
  • 25. ZHANG F., CHEN M., ZHANG Y., ZHEN R.J. Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration. Journal of Membrane Science, 47 (1), 28, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e1f7c749-0eac-4fd9-95c4-1d1d1fd21360
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.