PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 4 |

Tytuł artykułu

A contemplation on the secondary origin of green algal and plant plastids

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A single origin of plastids and the monophyly of three “primary” plastid-containing groups – the Chloroplastida (or Viridiplantae; green algae+land plants), Rhodophyta, and Glaucophyta – are widely accepted, mainstream hypotheses that form the basis for many comparative evolutionary studies. This “Archaeplastida” hypothesis, however, thus far has not been unambiguously confirmed by phylogenetic studies based on nucleocytoplasmic markers. In view of this as well as other lines of evidence, we suggest the testing of an alternate hypothesis that plastids of the Chloroplastida are of secondary origin. The new hypothesis is in agreement with, or perhaps better explains, existing data, including both the plastidal and nucleocytoplasmic characteristics of the Chloroplastida in comparison to those of other groups.

Wydawca

-

Rocznik

Tom

83

Numer

4

Opis fizyczny

p.331-336,fig.,ref.

Twórcy

autor
  • Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79 Street, New York, NY 10024, USA
autor
  • Division of Environmental Photobiology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan

Bibliografia

  • 1. Archibald JM. The puzzle of plastid evolution. Curr Biol. 2009;19(2):R81–R88. http://dx.doi.org/10.1016/j.cub.2008.11.067
  • 2. Graham LE. Algae. 2nd ed. San Francisco, CA: Pearson/Benjamin Cummings; 2009.
  • 3. Palmer JD. The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol. 2003;39(1):4–12. http://dx.doi.org/10.1046/j.1529-8817.2003.02185.x
  • 4. Howe C, Barbrook A, Nisbet RE, Lockhart P, Larkum AW. The origin of plastids. Philos Trans R Soc Lond B Biol Sci. 2008;363(1504):2675–2685. http://dx.doi.org/10.1098/rstb.2008.0050
  • 5. Cavalier-Smith T. Kingdom protozoa and its 18 phyla. Microbiol Rev. 1993;57(4):953–994.
  • 6. Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. J EukaryotMicrobiol. 2012;59(5):429–514. http://dx.doi.org/10.1111/j.1550-7408.2012.00644.x
  • 7. Minge MA, Shalchian-Tabrizi K, Tørresen OK, Takishita K, Probert I, Inagaki Y, et al. A phylogenetic mosaic plastid proteome andunusual plastid-targeting signals in the green-colored dinoflagellateLepidodinium chlorophorum. BMC Evol Biol. 2010;10(1):191. http://dx.doi.org/10.1186/1471-2148-10-191
  • 8. Sanchez-Puerta MV, Bachvaroff TR, Delwiche CF. Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. MolPhylogenet Evol. 2007;44(2):885–897. http://dx.doi.org/10.1016/j.ympev.2007.03.003
  • 9. Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, et al. Chromera velia, endosymbioses and the rhodoplex hypothesis – plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes(CASH lineages). Genome Biol Evol. 2014;6(3):666–684. http://dx.doi. org/10.1093/gbe/evu043
  • 10. Parfrey LW, Lahr DJG, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks.Proc Natl Acad Sci USA. 2011;108(33):13624–13629. http://dx.doi.org/10.1073/pnas.1110633108
  • 11. Burki F, Okamoto N, Pombert JF, Keeling PJ. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci. 2012;279(1736):2246–2254. http://dx.doi.org/10.1098/rspb.2011.2301
  • 12. Stiller JW, Hall BD. The origin of red algae: implications for plastid evolution. Proc Natl Acad Sci USA. 1997;94(9):4520–4525.
  • 13. Stiller JW. Toward an empirical framework for interpreting plastid evolution. J Phycol. 2014;50(3):462–471. http://dx.doi.org/10.1111/jpy.12178
  • 14. Douglas SE, Turner S. Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J Mol Evol. 1991;33(3):267–273.http://dx.doi.org/10.1007/BF02100678
  • 15. Morden CW, Delwiche CF, Kuhsel M, Palmer JD. Gene phylogenies and the endosymbiotic origin of plastids. Biosystems. 1992;28(1–3):75–90. http://dx.doi.org/10.1016/0303-2647(92)90010-V
  • 16. Criscuolo A, Gribaldo S. Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Mol Biol Evol.2011;28(11):3019–3032. http://dx.doi.org/10.1093/molbev/msr108
  • 17. Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, et al. Cyanophora paradoxa genome elucidates origin of photosynthesisin algae and plants. Science. 2012;335(6070):843–847. http://dx.doi.org/10.1126/science.1213561
  • 18. Baldauf SL. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science. 2000;290(5493):972–977. http:// dx.doi.org/10.1126/science.290.5493.972
  • 19. Moreira D, Le Guyader H, Philippe H. The origin of red algae and the evolution of chloroplasts. Nature. 2000;405(6782):69–72. http://dx.doi.org/10.1038/35011054
  • 20. Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, et al. Monophyly of primary photosynthetic eukaryotes:green plants, red algae, and glaucophytes. Curr Biol. 2005;15(14):1325–1330. http://dx.doi.org/10.1016/j.cub.2005.06.040
  • 21. Rodríguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, et al. Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr Biol. 2007;17(16):1420–1425. http://dx.doi.org/10.1016/j.cub.2007.07.036
  • 22. Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland Å, Nikolaev SI, Jakobsen KS, et al. Phylogenomics reshuffles the eukaryoticsupergroups. PLoS ONE. 2007;2(8):e790. http://dx.doi.org/10.1371/journal.pone.0000790
  • 23. Nozaki H, Iseki M, Hasegawa M, Misawa K, Nakada T, Sasaki N, et al. Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes. Mol Biol Evol. 2007;24(8):1592–1595.http://dx.doi.org/10.1093/molbev/msm091
  • 24. Burki F, Shalchian-Tabrizi K, Pawlowski J. Phylogenomics reveals a new “megagroup” including most photosynthetic eukaryotes. BiolLett. 2008;4(4):366–369. http://dx.doi.org/10.1098/rsbl.2008.0224
  • 25. Burki F, Inagaki Y, Brate J, Archibald JM, Keeling PJ, Cavalier-Smith T, et al. Large-scale phylogenomic analyses reveal that two enigmaticprotist lineages, telonemia and centroheliozoa, are related to photosyntheticchromalveolates. Genome Biol Evol. 2010;1:231–238. http://dx.doi.org/10.1093/gbe/evp022
  • 26. Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K. Phylogenetic positions of Glaucophyta, green plants (Archaeplastida)and Haptophyta (Chromalveolata) as deduced from slowly evolvingnuclear genes. Mol Phylogenet Evol. 2009;53(3):872–880. http://dx.doi.org/10.1016/j.ympev.2009.08.015
  • 27. Brown MW, Kolisko M, Silberman JD, Roger AJ. Aggregative multicellularity evolved independently in the eukaryotic supergroup rhizaria.Curr Biol. 2012;22(12):1123–1127. http://dx.doi.org/10.1016/j.cub.2012.04.021
  • 28. Zhao S, Burki F, Brate J, Keeling PJ, Klaveness D, Shalchian-Tabrizi K. Collodictyon – an ancient lineage in the tree of eukaryotes. Mol Biol Evol. 2012;29(6):1557–1568. http://dx.doi.org/10.1093/molbev/mss001
  • 29. Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AGB, et al. Phylogenomics demonstrates that breviate flagellatesare related to opisthokonts and apusomonads. Proc Biol Sci.2013;280(1769):20131755. http://dx.doi.org/10.1098/rspb.2013.1755
  • 30. Burki F, Corradi N, Sierra R, Pawlowski J, Meyer GR, Abbott CL, et al. Phylogenomics of the intracellular parasite Mikrocytos mackini revealsevidence for a mitosome in rhizaria. Curr Biol. 2013;23(16):1541–1547.http://dx.doi.org/10.1016/j.cub.2013.06.033
  • 31. Yabuki A, Kamikawa R, Ishikawa SA, Kolisko M, Kim E, Tanabe AS, et al. Palpitomonas bilix represents a basal cryptist lineage: insightinto the character evolution in Cryptista. Sci Rep. 2014;4:4641. http://dx.doi.org/10.1038/srep04641
  • 32. Jackson CJ, Reyes-Prieto A. The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis:multilocus phylogenetics suggests a monophyletic Archaeplastida.Genome Biol Evol. 2014;6(10):2774–2785. http://dx.doi.org/10.1093/gbe/evu218
  • 33. Stiller JW, Riley J, Hall BD. Are red algae plants? A critical evaluation of three key molecular data sets. J Mol Evol. 2001;52(6):527–539.http://dx.doi.org/10.1007/s002390010183
  • 34. Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR. Chloroplast genomes of the diatoms Phaeodactylumtricornutum and Thalassiosira pseudonana: comparison withother plastid genomes of the red lineage. Mol Genet Genomics.2007;277(4):427–439. http://dx.doi.org/10.1007/s00438-006-0199-4
  • 35. Kim E, Lane CE, Curtis BA, Kozera C, Bowman S, Archibald JM. Complete sequence and analysis of the mitochondrial genome ofHemiselmis andersenii CCMP644 (Cryptophyceae). BMC Genomics.2008;9(1):215. http://dx.doi.org/10.1186/1471-2164-9-215
  • 36. Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, et al. Red and green algal monophyly and extensive gene sharing foundin a rich repertoire of red algal genes. Curr Biol. 2011;21(4):328–333.http://dx.doi.org/10.1016/j.cub.2011.01.037
  • 37. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005;52(5):399–451.http://dx.doi.org/10.1111/j.1550-7408.2005.00053.x
  • 38. Cavalier-Smith T. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations. J Eukaryot Microbiol.2009;56(1):26–33. http://dx.doi.org/10.1111/j.1550-7408.2008.00373.x
  • 39. Roger AJ, Simpson AGB. Evolution: revisiting the root of the eukaryote tree. Curr Biol. 2009;19(4):R165–R167. http://dx.doi.org/10.1016/j.cub.2008.12.032
  • 40. Walker G, Dorrell RG, Schlacht A, Dacks JB. Eukaryotic systematics: a user’s guide for cell biologists and parasitologists.Parasitology. 2011;138(13):1638–1663. http://dx.doi.org/10.1017/ S0031182010001708
  • 41. Deschamps P, Moreira D. Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes. Mol Biol Evol. 2009;26(12):2745–2753. http://dx.doi.org/10.1093/molbev/msp189
  • 42. Maddison W, Knowles L. Inferring phylogeny despite incomplete lineage sorting. Syst Biol. 2006;55(1):21–30. http://dx.doi.org/10.1080/10635150500354928
  • 43. Laurin-Lemay S, Brinkmann H, Philippe H. Origin of land plants revisited in the light of sequence contamination and missing data.Curr Biol. 2012;22(15):R593–R594. http://dx.doi.org/10.1016/j.cub.2012.06.013
  • 44. O’Kelly CJ. Relationships of eukaryotic algal groups to other protists. In: Berner T, editor. Ultrastructure of microalgae. Boca Raton, FL: CRC Press; 1993. p. 269–293.
  • 45. Stiller JW. Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci. 2007;12(9):391–396. http://dx.doi. org/10.1016/j.tplants.2007.08.002
  • 46. Ball SG, Subtil A, Bhattacharya D, Moustafa A, Weber APM, Gehre L, et al. Metabolic effectors secreted by bacterial pathogens: essentialfacilitators of plastid endosymbiosis? Plant Cell. 2013;25(1):7–21.http://dx.doi.org/10.1105/tpc.112.101329
  • 47. Rujan T, Martin W. How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. Trends Genet. 2001;17(3):113–120. http://dx.doi.org/10.1016/S0168-9525(00)02209-5
  • 48. Deschamps P, Haferkamp I, Dauvillee D, Haebel S, Steup M, Buleon A, et al. Nature of the periplastidial pathway of starch synthesis in the cryptophyte Guillardia theta. Eukaryot. Cell. 2006;5(6):954–963.http://dx.doi.org/10.1128/EC.00380-05
  • 49. Dagan T, Martin W. The tree of one percent. Genome Biol. 2006;7(10):118. http://dx.doi.org/10.1186/gb-2006-7-10-118
  • 50. Rumpho ME. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 2000;123(1):29–38. http://dx.doi.org/10.1104/pp.123.1.29
  • 51. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA. 2002;99(19):12246– 12251. http://dx.doi.org/10.1073/pnas.182432999
  • 52. Bodył A. Do plastid-related characters support the chromalveolate hypothesis? J Phycol. 2005;41(3):712–719. http://dx.doi.org/10.1111/j.1529-8817.2005.00091.x
  • 53. Cenci U, Nitschke F, Steup M, Minassian BA, Colleoni C, Ball SG. Transition from glycogen to starch metabolism in Archaeplastida.Trends Plant Sci. 2014;19(1):18–28. http://dx.doi.org/10.1016/j.tplants.2013.08.004
  • 54. Deschamps P, Haferkamp I, d’ Hulst C, Neuhaus HE, Ball SG. The relocation of starch metabolism to chloroplasts: when, why and how. Trends Plant Sci. 2008;13(11):574–582. http://dx.doi.org/10.1016/j.tplants.2008.08.009
  • 55. Flannagan RS, Jaumouillé V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol. 2012;7(1):61–98. http://dx.doi.org/10.1146/annurev-pathol-011811-132445
  • 56. Raven JA, Beardall J, Flynn KJ, Maberly SC. Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode ofnutrition in phototrophs: relation to Darwin’s insectivorous plants. JExp Bot. 2009;60(14):3975–3987. http://dx.doi.org/10.1093/jxb/erp282
  • 57. Raven JA. Phagotrophy in phototrophs. Limnol Ocean. 1997;42(1):198– 205. http://dx.doi.org/10.4319/lo.1997.42.1.0198
  • 58. Yamaguchi A, Yubuki N, Leander BS. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophyto phototrophy: description of Rapaza viridis n. gen. et sp.(Euglenozoa, Euglenida). BMC Evol Biol. 2012;12(1):29. http://dx.doi.org/10.1186/1471-2148-12-29
  • 59. Maruyama S, Kim E. A modern descendant of early green algal phagotrophs. Curr Biol. 2013;23(12):1081–1084. http://dx.doi.org/10.1016/j.cub.2013.04.063
  • 60. McKie-Krisberg ZM, Sanders RW. Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans. ISMEJ. 2014;8(10):1953–1961. http://dx.doi.org/10.1038/ismej.2014.16
  • 61. Baurain D, Brinkmann H, Petersen J, Rodriguez-Ezpeleta N, Stechmann A, Demoulin V, et al. Phylogenomic evidence for separateacquisition of plastids in cryptophytes, haptophytes, and stramenopiles.Mol Biol Evol. 2010;27(7):1698–1709. http://dx.doi.org/10.1093/ molbev/msq059

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-e111b13e-3a3e-42d8-a9e9-c1fcc8ba0956
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.