Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 162 | 05 |
Tytuł artykułu

Szerokość pasma jądrowego estymatora rozkładu pierśnic w drzewostanach olszy czarnej (Alnus glutinosa (L.) Gaertn.) z zachodniej części Kotliny Sandomierskiej

Warianty tytułu
Bandwidth of kernel estimator of DBH distribution in black alder (Alnus glutinosa (L.) Gaertn.) stands from west part of the Sandomierz Basin
Języki publikacji
Set of ‘nonparametric’ methods, that don’t make a priori assumption about functional form of empirical distribution was developed as an alternative to the parametric distribution modeling. The kernel estimators are one of such methods, that can be used to describe the frequency of data representing for example DBH records. Kernel smoothing requires the choice of weighting function and bandwidth also called as smoothing parameter or window. The lack of comprehensive analysis on the applicability of particular bandwidth selection methods to model DBH structure gave an impulse to present investigation aimed at determining value and variability of smoothing parameter in black alder stands. The optimal bandwidth was obtained according to six different variants of plug−in method proposed by Altman and Léger. Presented investigations were based on DBH measurements collected in 163 managed black alder stands aged from 6 to 89 years, growing in the west part of the Sandomierz Basin (S Poland). We measured in total 22,530 black alders, from 48 to 359 in individual stand. Stands were characterized by: age, quadratic mean diameter, basal area, mean height, Reineke’s stand density index and standard deviation of DBH. Smoothing parameter was obtained by means of plug−in method with the pilot bandwidth selected by: Silverman’s rule of thumb (nrd0), Scott’s method (nrd), unbiased cross−validation (ucv), biased cross−validation (bcv), method of Sheather and Jones (sj) and one−stage method of Wand and Jones (onestage). The bandwidth was first obtained to real data, then to 100 bootstrap samples of 5, 10, 15 ... and 100 trees from each stand. Smoothing parameters were characterized by mean and variance. Relationship between values of smoothing parameter and stand characteristics was determined. Finally the influence of sample size on value and variability of bandwidth was assessed. Value and variability of smoothing parameter in black alder stands are determined by stand age, sample size and method of bandwidth choice. There is a close relationship between bandwidth and the mean height (r from 0.75 to 0.83), quadratic mean diameter (r from 0.79 to 0.88) and standard deviation of DBH (r from 0.84 to 0.93). Potentially these stand features can be used to predict smoothing parameter values. Minor changes of bandwidth for samples containing above 50 trees together with persistence of standard error give an objective grounds for defining optimal number of diameters, that are necessary to kernel estimation of DBH distribution.
Opis fizyczny
  • Zakład Biometrii i Produkcyjności Lasu, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków
  • Zakład Biometrii i Produkcyjności Lasu, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków
  • Zakład Biometrii i Produkcyjności Lasu, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków
  • Altman N., Léger C. 1995. Bandwidth selection for kernel distribution function estimation. Journal of Statistical Planning and Inference 46 (2): 195-214.
  • Baszczyńska A. 2014. Metoda jądrowa w analizie finansowych szeregów czasowych. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu 371: 23-31.
  • Bollandsĺs O. M., Maltamo M., Gobakken T., Naesset E. 2013. Comparing parametric and non-parametric modelling of diameter distributions on independent data using airborne laser scanning in a boreal conifer forest. Forestry 86 (4): 493-501.
  • Borders B. E., Souter R. A., Bailey R. L., Ware K. D. 1987. Percentile – based distributions characterize forest stand tables. Forest Science 33 (2): 570-576.
  • Borowski M. 1974. Przyrost drzew i drzewostanów. PWRiL, Warszawa.
  • Čavlović J., Božić M., Boncina A. 2006. Stand structure of an uneven-aged fir-beech forest with an irregular diameter structure: modelling the development of the Belevine forest, Croatia. European Journal of Forest Research 125 (4): 325-333.
  • Duin R. P. W. 1976. On the choice of smoothing parameters for Parzen estimators of probability density functions. IEEE Transactions on Computers.
  • Guidoum A. C. 2015. kedd: Kernel estimator and bandwidth selection for density and its derivatives. R package version 1.0.3.
  • Haara A., Maltamo M., Tokola T. 1997. The k-nearest-neighbour method for estimating basal-area diameter distribution. Scandinavian Journal of Forest Research 12 (2): 200-208.
  • Hann D. W., Bare B. B. 1979. Uneven-aged forest management: State of the Art (or Science?). USDA Forest Service, General Technical Report INT-50.
  • Hansen B. E. 2004. Bandwidth selection for nonparametric distribution estimation. Manuskrypt. Uniwersytet Wisconsin.
  • Kangas A., Maltamo M. 2000. Percentile based basal area diameter distribution models for Scots pine, Norway spruce and birch species. Silva Fennica 34 (4): 371-380.
  • Kulczycki P. 2005. Estymatory jądrowe w analizie systemowej. Wydawnictwo Naukowo-Techniczne, Warszawa.
  • Kulczycki P. 2007. Analiza danych z użyciem estymatorów jądrowych w zastosowaniu do diagnostyki systemów. W: Korbicz J., Patan K., Kowal M. [red.]. Diagnostyka procesów i systemów. EXIT, Warszawa. 231-238.
  • Lima R. A. F., Batista J. L. F., Prado P. I. 2015. Modeling tree diameter distributions in natural forests: an evaluation of 10 statistical models. Forest Science 61 (2): 320-327.
  • Liu C., Zhang L., Davis C. J., Solomon D. S., Gove J. H. 2002. A Finite Mixture Model for characterizing the diameter distributions of mixed-species forest stands. Forest Science 48 (4): 653-661.
  • Loader C. R. 1999. Bandwidth selection: classical or plug-in? The Annals of Statistics 27 (2): 415-438.
  • López-de-Ullibarri I. 2015. Bandwidth selection in kernel distribution function estimation. The Stata Journal 15 (3): 784-795.
  • Łukasik S. 2008. Identyfikacja rozkładu w systemach rzeczywistych za pomocą estymatorów jądrowych. Czasopismo Techniczne Politechniki Krakowskiej 17: 3-13.
  • Maltamo M., Kangas A. 1998. Methods based on k-nearest neighbour regression in the prediction of basal area diameter distribution. Canadian Journal of Forest Research 28 (8): 1107-1115.
  • Maltamo M., Malinen J., Kangas A., Härkönen S., Pasanen A. M. 2003. Most similar neighbour-based stand variable estimation for use in inventory by compartments in Finland. Forestry 76 (4): 449-463.
  • Orzeł S., Pogoda P., Ochał W. 2017. Ocena przydatności wybranych funkcji do modelowania rozkładu pierśnic w drzewostanach olszy czarnej (Alnus glutinosa (L.) Gaertn.). Sylwan 161 (2): 101-113.
  • Parzen E. 1962. On estimation of a probability density function and mode. Annals of Mathematical Statistics 33 (3): 1065-1076.
  • Podlaski R. 2013. Parametryczna i nieparametryczna aproksymacja rozkładów pierśnic w drzewostanach o różnej budowie pionowej. Acta Agraria et Silvestria series Silvestris 51: 27-44.
  • Podlaski R. 2017. Forest modeling: the gamma shape mixture model and simulation of tree diameter distributions. Annals of Forest Science 74 (2): 1-10.
  • Podlaski R., Roesch F. A. 2014. Aproksymacja rozkładów pierśnic drzew w dwugeneracyjnych drzewostanach za po-mocą rozkładów mieszanych. III. Estymatory jądrowe a rozkłady mieszane. Sylwan 158 (6): 414-422.
  • Pretzsch H. 2000. From yield tables to simulation models for pure and mixed stands. Journal of Forest Science 46 (3): 97-113.
  • Pukkala T., Lähde E., Laiho O. 2010. Optimizing the structure and management of uneven-sized stands of Finland. Forestry 83 (2): 129-142.
  • Quintela-del-Río A., Estévez-Pérez G. 2012. Nonparametric kernel distribution function estimation with kerdiest: An R package for bandwidth choice and applications. Journal of Statistical Software 50 (8): 21.
  • Raykar V. C., Duraiswami R. 2005. Very fast optimal bandwidth selection for univariate kernel density estimation. In CS-TR-4774, Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, Collegepark.
  • Robinson A. P., Hamann J. D. 2011. Forest analytics with R. An introduction. Springer New York Dordrecht Heidelberg London.
  • Shaw J. D. 2006. Reineke’s Stand Density Index: Where are we and where do we go from here? Proceedings: Society of American Foresters 2005 National Convention, Oct. 19-23.
  • Sheather S. J. 2004. Density estimation. Statistical Science 19 (4): 588-597.
  • Silverman B. W. 1986. Density estimation for statistics and data analysis. Chapman and Hall, London.
  • Taubert F., Hartig F., Dobner H. J., Huth A. 2013. On the challenge of fitting tree size distributions in ecology. PloS ONE 8 (2): e58036.
  • Téllez A. E., Grande Ortiz M. Á, González García C., Martin Fernández Á. J., García A. I. 2008. The kernel estimation in biosystems engineering. Journal of Systemics, Cybernetics and Informatics 6 (2): 23-27.
  • Uusitalo J., Puustelli A., Kivinen V.-P., Nummi T., Sinha B. K. 2006. Bayesian estimation of diameter distribution during harvesting. Silva Fennica 40 (4): 663-671.
  • Uutera J., Maltamo M. 1995. Impact of regeneration method on stand structure prior to first thinning. Comparative study North Karelia, Finland vs. Republic of Karelia, Russian Federation. Silva Fennica 29 (4): 267-285.
  • Wand M. P., Jones M. C. 1995. Kernel smoothing. Chapman and Hall, London, New York.
  • Wang X. F. 2012. sROC: Nonparametric smooth ROC curves for continuous data. R package version 0.1-2.
  • Zambom A. Z., Dias R. 2012. A review of kernel density estimation with applications to econometrics. arXiv preprint arXiv:1212.2812.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.