PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 2 |

Tytuł artykułu

Ultrastructural and photosynthetic response of Populus 107 leaves to cadmium stress

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
As Populus 107 is an efficient phytoextraction plant, it was used in the present investigation in order to better understand the mechanisms of detoxification and tolerance of Cd. Cd-induced impacts on photosynthetic parameters (chlorophyll content, soluble protein, and chlorophyll fluorescence) and ultrastructural changes in leaves of Populus 107 exposed to 50 μM, 100 μM, and 500 μM for 40 days were carried out. The results showed that in the Cd-treated cells, almost all the chloroplasts seemed to be affected. Cd induced several significant ultrastructural changes, including swollen chloroplast thylakoids, dissolved thylakoid grana, disintegrated chloroplasts, and numerous plastoglobuli in chloroplasts. Data from chlorophyll fluorescence showed that Fv/Fm, Fv ’/Fm’, ΦPSII, ETR, and qP decreased while qN increased in leaves of Populus 107 exposed to Cd when compared to control. The content of soluble protein increased with increasing Cd concentration and declined with prolonged duration of treatment. The soluble protein content in leaves treated with 50 μM Cd reached the maximum, which was 14.29% more than that of control. The content in leaves exposed to 500 μM Cd were only 61.76% of control. At the end of the experiment the contents of chlorophyll a, b, and a+b of Populus 107 treated with 500 μM Cd decreased to the minimum, which were 47.69%, 37.10%, and 45.49% of control, and respectively, and significantly (P < 0.05) lower than control. The toxic mechanisms of Cd are briefly explained.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

2

Opis fizyczny

p.519-527,fig.,ref.

Twórcy

autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
  • Key Laboratory of Bamboo and Rattan Science and Technology of the State Forestry Administration, International Centre for Bamboo and Rattan, Beijing 100102, China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
  • Tianjin No.7 Junior and Senior High School, Tianjin 300160, China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China

Bibliografia

  • 1. DALCORSO G., FARINATI S., MAISTRI S., FURINI A. How plants cope with cadmium: staking all on metabolism and gene expression. J. Integr. Plant Biol. 50, 1268, 2008.
  • 2. PINTO A.P., MOTA A.M., DE VARENNES A., PINTO F.C. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci. Total Environ. 326, 239, 2004.
  • 3. JÄRUP L., ÅKESSON A. Current status of cadmium as an environmental health problem. Toxicol Appl. Pharm. 238, 201, 2009.
  • 4. BENAVIDES M.P., GALLEGO S.M., TOMARO M.L. Cadmium toxicity in plants. Braz. J. Plant Physiol. 17, 21, 2005.
  • 5. FERNANDEZ-OCANA A., CHAKI M., LUQUE F., GOMEZ-RODRIGUEZ M.V., CARRERAS A., VALDERRAMA R., BEGARA-MORALES J.C., HERNANDEZ L.E., CORPAS F.J., BARROSO J.B. Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD. J. Plant Physiol. 168, 1303, 2011.
  • 6. MENDOZA-CÓZATL D., LOZA-TAVERA H., HERNANDEZ-NAVARRO A., MORENO-SANCHEZ R. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29, 653, 2005.
  • 7. EKMEKCI Y., TANYOLAC D., AYHAN B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J. Plant Physiol. 165, 600, 2008.
  • 8. HE J.Y., REN Y.F., ZHU C., YAN Y.P., JIANG D.A. Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica, 46, 466, 2008.
  • 9. GILL SS., KHAN NA., TUTEJA N. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidum sativum L.). Plant Sci. 182, 112, 2012.
  • 10. HASAN S.A., HAYAT S., ALI B., AHMAD A. 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ. Pollut. 151, 60, 2008.
  • 11. SANDALIO L.M., DALURZO H.C., GOMEZ M., ROMERO-PUERTAS M.C., del RÍO L.A. Cadmiuminduced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52, 2115, 2001.
  • 12. MONTEIRO M.S., SANTOS C., SOARES A.M.V.M., MANN R.M. Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol. Environ. Saf. 72, 811, 2009.
  • 13. DIAS MC., MONTEIRO C., MOUTINHO-PEREIRA J., CORREIA C., GONÇALVES B., SANTOS C. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant. 35, 1281, 2013.
  • 14. NAJEEB U., JILANIC G., ALIA S., SARWARD M., XUA L., ZHOUA W. Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J. Hazard. Mater. 186, 565, 2011.
  • 15. BAZZAZ F.A., ROLFE G.L., CARLSON R.W. Effect of Cd on photosynthesis and transpiration in excised leaves of cornand sunflower. Plant Physiol. 32, 373, 1974.
  • 16. HAMPP R., BEULICH K., ZIEGLER H. Effects of zinc and cadmium on photosynthetic CO₂-fixation and Hill activity of isolated spinach chloroplasts. Z. Pflanzenphysiol. 77, 336, 1976.
  • 17. SIEDLECKA A., KRUPA Z., SAMUELSSON G., OEQUIST G., GARDESTROEM P. Primarycarbon metabolism in Phaseolus vulgaris plants under Cd(II)/Fe interaction. Plant Physiol. Biochem. 35, 951, 1997.
  • 18. YING R.R., QIU R.L., TANG Y.T., HUA P.J., QIU H., CHEN H.R., SHI T.H., MOREL J.L. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J. Plant Physiol. 167, 81, 2010.
  • 19. STEPHAN U.W., PROCHAZKA Z. Physiological disorders of the nicotianamine-auxotroph tomato mutant chloronerva at different levels of iron nutrition. I. Growth characteristics and physiological abnormalities as related to iron and nicotianamine supply. Acta Bot. Neerl. 38, 147, 1989.
  • 20. BRADFORD M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 72, 248, 1976.
  • 21. ZARCO-TEJADA P.J., BERJÓN A., LÓPEZ-LOZANO R., MILLER J.R., MARTÍN P., CACHORRO V., GONZÀLEZ M.R., DE FRUTOS A. Assessing vineyard condition with hyperspectral indices: leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 99, 271, 2005.
  • 22. GENTY B., BRIANTAIS J.M., BAKER N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem. Biophys. Acta 99, 87, 1989.
  • 23. SOUZA R.P., MACHADO E.C., SILVA J.A.B., LAGOA A.M.M.A., SILVEIRA J.A.G. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. exp. Bot. 51, 45, 2004.
  • 24. SPURR A.R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultra. Res. 26, 31, 1969.
  • 25. SINGH P.K., TEWARI R.K. Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J. Environ. Biol. 24, 107, 2003.
  • 26. AIBIBU N., LIU Y.G., ZENG G.M., WANG X., CHEN B.B., SONG H.X., XUA LI. Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresource Technol. 101, 6297, 2010.
  • 27. YANG Q.S., WANG Y.Q., ZHANG J.J., SHI W., QIAN C., PENG X. Identification of aluminum-responsive proteins in rice roots by a proteomic approach: Cysteine synthase as a key player in Al response. Proteomics, 7, 737, 2007.
  • 28. JIANG H.P., GAO B.B., LI W.H., ZHU M., ZHENG C.F., ZHENG Q.S., WANG C.H. Physiological and biochemical responses of Ulva prolifera and Ulva linza to cadmium stress. Sci. World J. 2013, 1, 2013.
  • 29. TRACHOOTHAM D., ALEXANDRE J., HUANG P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature Rev. Drug Discovery, 8, 579, 2009.
  • 30. PIETRINI F., IANNELLI M.A., MONTANARI R., BIANCONI D., MASSACCI A. Cadmium I nteraction with thiols and photosynthesis in higher plants. In A. H. Jodhpur. (Ed.) Advances in Plant Physiology, India: Scientific Publishers. 8, 313, 2005.
  • 31. WANG F., CHEN F., CAI Y., ZHANG G.P., WU F.B. Modulation of Exogenous Glutathione in Ultrastructure and Photosynthetic Performance Against Cd Stress in the Two Barley Genotypes Differing in Cd Tolerance. Biol. Trace Ele. Res. 144, 1275, 2011.
  • 32. SEREGIN I.V., IVANOV V.B. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ. J. Plant Physiol. 48, 523, 2001.
  • 33. PIETRINI F., ZACCHINI M., IORI V., PIETROSANTI L., BIANCONI D., MASSACCI A. Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int. J. Phytoremed. 12, 105, 2010.
  • 34. SHEN D.Y., YANG W.Q., ZHANG J., ZHOU L.Q., WU, F.H. Effects of cadmium on photosynthetic characters and biomass production of A poplar (Populus deltoids × Populus nigra). J. Sichuan Agr. Univ. 28, 61, 2010.
  • 35. NADA E., FERJANI B.A., ALI R., IMED B.R.B.M., MAKKI B. Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physil. Plant. 29, 57, 2007.
  • 36. BAKER N.R., ROSENQUIST E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55, 1607, 2004.
  • 37. MAXWELL K., JOHNSON G.N. Chlorophyll fluorescence – a practical guide. J Exp. Bot. 51, 659, 2000.
  • 38. BERTRAND M., POIRIER I. Photosynthetic organisms and excess of metals. Photosynthetica 43, 345, 2005.
  • 39. KHAN M.I.R., KHAN N.A. Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma DOI 10.1007/s00709-014-0610-7, 2014.
  • 40. SKORZYNSKA-POLIT E., DRAZKIEWICZ M., KRUPA Z. Lipid peroxidation and oxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Plant Physiol. 32, 169, 2010.
  • 41. ROMANOWSKA E., WASILEWSKA W., FRISTEDT R., VENER A.V., ZIENKIEWICZ M. Phosphorylation of PSII proteins in maize thylakoids in the presence of Pb ions. J. Plant Physiol. 169, 345, 2012.
  • 42. PIETRINI F., ZACCHINI M., IORI V., PIETROSANTI L., BIANCONI D., MASSACCI A. Spatial distribution of cadmium in leaves and its impact on photosythesis: examples of different strategies in willow and poplar clones. Plant Biol. 12, 355, 2010.
  • 43. CHOUDHURY S., PANDA S.K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Poll. 167, 73, 2005.
  • 44. BI Y.H., CHEN W.L., ZHANG W.N., ZHOU Q., YUN L.J., XING D. Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmiuminduced cell death in Arabidopsis thaliana. Biol. Cell 101, 629, 2009.
  • 45. DALLA VECCHIA F., LA ROCCA N., MORO I., DE FAVERI S., ANDREOLI C., RASCIO N. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci. 168, 329, 2005.
  • 46. ESPOSITO S., SORBO S., CONTE B., BASILE A. Effects of heavy metals on ultrastructure and HSP70s induction in the aquatic moss Leptodictyum riparium Hedw. Int. J. Phytoreme. 14, 443, 2012.
  • 47. GALLEGO S.M., BENAVIDES M.P., TOMARO M.L. Effect of heavymetal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci. 121, 151, 1996.
  • 48. RAUSER W.E., SAMARAKOON, A.B. Vein loading in seedlings of Phaseolus vulgaris exposed to excess cobalt, nikel and zinc. Plant Physiol. 65, 578, 1980.
  • 49. MOLAS J. Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni(II) complexes. Environ. Exp. Bot. 47, 115, 2002.
  • 50. HERMLE S., VOLLENWEIDE P., GÜNTHARDT-GOERG M.S., MCQUATTIE C.J., MATYSSEK R. Leaf responsiveness of Populus tremula and Salix viminalis to soil contaminated with heavy metals and acidic rainwater. Tree Physiol. 27, 1517, 2007.
  • 51. DEFILIPPIS L.F., ZIEGLER H. Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of euglena. J. Plant Physiol. 142, 167, 1993.
  • 52. DJEBALI W., ZARROUK M., BROUQUISSE R., EL KAHOUI S., LIMAM F., GHORBEL M.H., CHAÏBI W. Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol. 7, 358, 2005.
  • 53. HAKMAOUI A., ATERA M., BÓKAB K., BARÓNC M. Copper and cadmium tolerance, uptake and effect on chloroplast ultrastructure: Studies on Salix purpurea and Phragmites australis. Zeitschrift Fur Naturforschung C-A J. Biosci. 62, 417, 2007.
  • 54. GE W., JIAO Y.Q., SUN B.L., QIN R., JIANG W.S., LIU D.H. Cadmium-mediated oxidative stress and ultrastructural changes in root cells of poplar cultivars. S. Afr. J. Bot. 83, 98, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-df8ffa7c-0a54-4c55-8879-5f74d1ea02c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.