PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 06 |

Tytuł artykułu

Alleviating negative effects of salinity stress in summer savory (Satureja hortensis L.) by biochar application

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
One of the most important stresses imperiling plant production in arid and semi-arid areas is salinity. By slow pyrolysis, a solid organic material, which is called biochar (BC), has been produced from waste organic substances. In this research, a pot factorial arrangement on the basis of randomized complete design was accomplished to evaluate the influence of BC on some physiological traits and growth at two different growth stages of summer savory (Satureja hortensis L.) under salinity stress. The treatments were included of three levels of BC (0, 1 and 2% w/w in the soil) and four salinity levels (0, 40, 80 and 120 mM of NaCl) with four replications. According to the findings, application of BC, especially at 2% w/w in the soil under salinity stress, reduced electrolyte leakage (EL) and antioxidant enzyme activities, i.e., ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX) activities and MDA content at vegetative and flowering stages. On the other side, the highest amounts of biomass and water content were observed when using BC 2% w/w of soil without salinity stress. The results confirmed that BC usage can contribute to the protection of the summer savory against salinity stress by alleviating the oxidative stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

06

Opis fizyczny

Article 98 [13p.], fig.,ref.

Twórcy

  • Department of Horticulture Science, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775‑1163, Mashhad, Iran
autor
  • Department of Horticulture Science, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775‑1163, Mashhad, Iran
autor
  • Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Bibliografia

  • Akbari S, Kordi S, Fatahi S, Ghanbari F (2013) Physiological responses of summer savory (Satureja hortensis L.) under salinity stress. Int J Agric Crop Sci 5(15):1702–1708
  • Akhtar SS, Andersen MN, Liu F (2015) Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric Water Manag 158:61–68
  • Ali S, Rizwan M, Qayyum MF, Ok YS, Ibrahim M, Riaz M, Arif MS, Hafeez F, Al-Wabel MI, Shahzad AN (2017) Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci Pollut Res 24(14):12700–12712
  • Attia H, Arnaud N, Karray N, Lachaâl M (2008) Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves. Physiol Plant 132:293–305
  • Bączek-Kwinta R (2017) Swailing affects seed germination of plants of European bio-and agricenosis in a different way. Open Life Sci 12(1):62–75
  • Beers RF, Sizer IW (1952) A spectrophotometric method of measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254
  • Cheraghi SAM (2004) Institutional and scientific profiles of organizations working on saline agriculture in Iran. In: Prospects of saline agriculture in the Arabian Peninsula: proceedings of the international seminar on prospects of saline agriculture in the GCC countries 18–20 March 2001, Dubai, United Arab Emirates, Taha FK, Ismail S, Jaradat A (eds). Amherst Scientific Publishers: Amherst, pp 399–412
  • Delavari P, Baghizadeh A, Enteshari S, Kalantari KM, Yazdanpanah A, Mousavi E (2010) The effects of salicylic acid on some of biochemical and morphological characteristic of Ocimum basilicucm under salinity stress. Aust J Basic Appl Sci 4(10):4832–4845
  • English JP, Colmer TD (2013) Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species). Funct Plant Biol 40:897–912
  • Farhangi-Abriz S, Torabian S (2017) Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol Environ Saf 137:64–70
  • Flowers TJ, Galal HK, Bromham L (2010a) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612
  • Flowers TJ, Gaur PM, Gowda CLL, Krishnamurthy L, Samineni S, Siddique KH, Tuner NC, Vadez V, Varshney RK, Colmer TD (2010b) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509
  • Fu J, Huang B (2001) Involvement of anti-oxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot 45:105–114
  • Gapińska M, Skłodowska M, Gabara B (2008) Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30(1):11–18
  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59(2):309–314
  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930
  • Haddadi BS, Hassanpour H, Niknam V (2016) Effect of salinity and waterlogging on growth, anatomical and antioxidative responses in Mentha aquatica L. Acta Physiol Plant 38(5):119–125
  • Hu L, Li H, Pang H, Fu J (2012) Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol 169(2):146–156
  • Jakovljević DZ, Topuzović MD, Stanković MS, Bojović BM (2017) Changes in antioxidant enzyme activity in response to salinity-induced oxidative stress during early growth of sweet basil. Hortic Environ Biotechnol 58(3):240–246
  • Jbir-Koubaa R, Charfeddine S, Ellouz W, Saidi MN, Drira N, Gargouri-Bouzid R, Nouri-Ellouz O (2015) Investigation of the response to salinity and to oxidative stress of interspecific potato somatic hybrids grown in a greenhouse. Plant Cell Tissue Organ Cult 120(3):933–947
  • Jebara S, Jebara M, Limam F, Aouani ME (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol 162(8):929–936
  • Jia L, Xu W, Li W, Ye N, Liu R, Shi L, Bin Rahman AR, Fan M, Zhang J (2013) Class III peroxidases are activated in proanthocyanidin-deficient Arabidopsis thaliana seeds. Ann Bot 111(5):839–847
  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defense system and osmoprotectant accumulation. Acta Physiol Plant 32:121–132
  • Kim HS, Kim KR, Yang JE, Ok YS, Owens G, Nehls T, Wessolek G, Kim KH (2016) Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 142:153–159
  • Liu ZJ, Guo Y, Bai JG (2010) Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. Plant Growth Regul 29(2):171–183
  • Momtaz S, Abdollahi M (2010) An update on pharmacology of Satureja species; from antioxidant, antimicrobial, antidiabetes and anti-hyperlipidemic to reproductive stimulation. Int J Pharmacol 6(4):346–353
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880
  • Nelissen V, Rutting T, Huygens D, Staelens J, Ruysschaert G, Boeckx P (2012) Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol Biochem 55:20–27
  • Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P, Urich T, Schleper C, Sassmann S, Kitzler B, Soja G, Hood-Nowotny RC (2014) Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS One 9(1):86388–86400
  • Rajapaksha AU, Chen SS, Tsang DC, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148(27):276–291
  • Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok YS (2016) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23(3):2230–2248
  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296
  • Sohi SP, Krull E, Lopez-Capele E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82 (Chapter 2)
  • Soleimani Z, Afshar A, Nematpour F (2017) Responses of antioxidant gene and enzymes to salinity stress in the Cuminum cyminum L. Russ J Plant Physiol 64(3):361–367
  • Stewart RR, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65(2):245–248
  • Taarit MB, Msaada K, Hosni K, Marzouk B (2011) Physiological changes and essential oil composition of clary sage (Salvia sclarea L.) rosette leaves as affected by salinity. Acta Physiol Plant 33(1):153–162
  • Thomas SC, FryeS Gale N, Garmon M, Launchbury R, Machado N, Melamed S, Murray J, Petroff A, Winsborough C (2013) Biochar mitigates negative effects of salt additions on two herbaceous plant species. J Environ Manag 129:62–68
  • Torabi S, Niknam V (2011) Effects of iso-osmotic concentrations of NaCl and mannitol on some metabolic activity in calluses of two Salicornia species. Vitro Cell Dev Biol Plant 47(6):734–742
  • Unal BT, Aktas L, Guven A (2014) Effects of salinity on antioxidant enzymes and proline in leaves of barley seedlings in different growth stages. Bulg J Agric Sci 20(4):883–887
  • Waling I, Van W, Vark VJG, Houba JJ, Van Der Lee L (1989) Soil and plant analysis, a series of syllabi. Part 7. Plant analysis procedures. Wageningen Agriculture University, Wageningen
  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: toward genetic engineering for stress tolerance. Planta 218:1–14
  • Wu GQ, Wang SM (2012) Calcium regulates K⁺/Na⁺ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant Soil Environ 58:121–127
  • Yamauchi Y, Furutera A, Seki K, Toyoda Y, Tanaka K, Sugimoto Y (2008) Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol Biochem 46(8):786–793
  • Yue LJ, Ma Q, Li SX, Zhou XR, Wu GQ, Bao AK, Zhang JL, Wang SM (2012) NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum. J Arid Environ 87:153–160

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-de747d3c-0a87-444b-bced-c6b0bfd6593f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.