PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 56 | 2 |

Tytuł artykułu

Body mass and behavior in Swiss mice subjected to continuous or discontinuous food restriction and refeeding

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Food restriction (FR) is hypothesized to decrease body fat content of an animal and thus prevent obesity. However, the response of energy budget to a continuous (CFR) or discontinuous FR (DFR) remains inconsistent. In the present study, effects of CFR or DFR and refeeding on energy budget and behavior were examined in male Swiss mice. CFR significantly decreased the energy expenditure associated with basal metabolic rate (BMR) and activity behavior, but not sufficiently to compensate for energy deficit and thus resulted in lower body mass and fat content. DFR mice had a significantly higher food intake on ad libitum days and showed increases in BMR and activity after 4 weeks’ DFR, which might resulted in lower body mass and less body fat than controls. After being refed ad libitum, both CFR and DFR mice had similar body mass, BMR, and behavioral patterns to controls but had 95% and 75% higher fat content. This suggested that not only CFR but also DFR would be a significant factor in the process of obesity for animals that were refed ad libitum. It also indicated that food restriction interrupted many times by periods of ad libitum feeding had the same long-term effects like continuous underfeeding.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

56

Numer

2

Opis fizyczny

p.129-139,fig.,ref.

Twórcy

autor
  • School of Agricultural Science, Liaocheng University, 1 Hunan Lu, Liaocheng, Shandong 252059, People's Republic of China
autor
  • School of Agricultural Science, Liaocheng University, 1 Hunan Lu, Liaocheng, Shandong 252059, People's Republic of China
autor
  • School of Agricultural Science, Liaocheng University, 1 Hunan Lu, Liaocheng, Shandong 252059, People's Republic of China
autor
  • School of Agricultural Science, Liaocheng University, 1 Hunan Lu, Liaocheng, Shandong 252059, People's Republic of China
autor
  • School of Agricultural Science, Liaocheng University, 1 Hunan Lu, Liaocheng, Shandong 252059, People's Republic of China

Bibliografia

  • Alvarenga TAF, Andersen ML, Papale LA, Antunes IB, Tufik S (2005) Influence of long-term food restriction on sleep pattern in male rats. Brain Res 1057:49–56. doi:10.​1016/​j.​brainres.​2005.​07.​024
  • Bartness TJ, Wade GN (1985) Photoperiodic control of seasonal body weight cycles in hamsters. Neurosci Biobehav Rev 9:599–612. doi:10.​1016/​0149-7634(85)90006-5
  • Boakes RA, Dwyer DM (1997) Weight loss in rats produced by running: effects of prior experience and individual housing. J Exp Psychol 50:B129–B148
  • Bozinovic F (1995) Nutritional energetics and digestive responses of an herbivorous rodent (Octodon degus) to different levels of dietary fiber. J Mammal 76:627–637. doi:10.​2307/​1382371
  • Bozinovic F, Bacigalupe LD, Vasquez RA, Visser GH, Veloso C, Kenagy GJ (2004) Cost of living in free-ranging degus (Octodon degus): seasonal dynamics of energy expenditure. Comp Biochem Physiol 137:A597–A604. doi:10.​1016/​j.​cbpb.​2003.​11.​014
  • Cao J, Zhang LN, Zhao ZJ (2009) Trade-off between energy budget, thermogenesis and behavior in Swiss mice under stochastic food deprivation. J Therm Biol 34:290–298. doi:10.​1016/​j.​jtherbio.​2009.​03.​006
  • Ferguson M, Sohal BH, Forster MJ, Sohal RS (2007) Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice. Mech Ageing Dev 128:539–545. doi:10.​1016/​j.​mad.​2007.​07.​005
  • Ferguson M, Rebrin I, Forster MJ, Sohal RS (2008) Comparison of metabolic rate and oxidative stress between two different strains of mice with varying response to caloric restriction. Exp Gerontol 43:757–763. doi:10.​1016/​j.​exger.​2008.​04.​016
  • Gorecki A (1975) Kalabukhov–Skvortsov respirometer and resting metabolic rate measurement. In: Grodzinski W (ed) Methods for ecological energetics. Blackwell Scientific, Oxford, pp 309–313
  • Gursoy E, Cardoune A, Hu Y, Kalimi M (2001) Biological effects of long-term caloric restriction: adaptation with simultaneous administration of caloric stress plus repeated immobilization stress in rats. Soc Exp Biol Med 226:97–102
  • Gutman R, Choshniak I, Kronfeld-Schor N (2006) Defending body mass during food restriction in Acomys russatus: a desert rodent that does not store food. Am J Physiol 290:R881–R891. doi:10.​1152/​ajpregu.​00156.​2005
  • Hambly C, Speakman JR (2005) Contribution of different mechanisms to compensation for energy restriction in the mouse. Obes Res 13:1548–1557. doi:10.​1038/​oby.​2005.​190
  • Hart RW, Turturro A (1998) Evolution and dietary restriction. Exp Gerontol 33:53–60. doi:10.​1016/​S0531-5565(97)00063-6
  • Hill JO, Latiff A, DiGirolamo M (1985) Effects of variable caloric restriction on utilization of ingested energy in rats. Am J Physiol 248:R549–R559
  • Kirkwood TB, Shanley DP (2005) Food restriction, evolution and ageing. Mech Ageing Dev 126:1011–1016. doi:10.​1016/​j.​mad.​2005.​03.​021
  • Marinković P, Pesić V, Loncarević N, Smiljanić K, Kanazir S, Ruzdijić S (2007) Behavioural and biochemical effects of various food-restriction regimens in the rats. Physiol Behav 92:492–499. doi:10.​1016/​j.​physbeh.​2007.​04.​023
  • Mattison JA, Lane MA, Roth GS, Ingram DK (2003) Calorie restriction in rhesus monkeys. Exp Gerontol 38:35–46. doi:10.​1016/​S0531-5565(02)00146-8
  • Means LW, Higgins JL, Fernandez TJ (1993) Midlife onset of dietary restriction extends life and prolongs cognitive-functioning. Physiol Behav 54:503–508
  • Roth GS, Ingram DK, Lane MA (2001) Caloric restriction in primates and relevance to humans. Ann NY Acad Sci 928:305–315. doi:10.​1002/​jemt.​10214
  • Sherwin CM (1998) Voluntary wheel running: a review and novel interpretation. Anim Behav 56:11–27. doi:10.​1006/​anbe.​1998.​0836
  • Speakman JR (2006) Thrifty genes for obesity and the metabolic syndrome—time to call off the search? Diabetes Vasc Dis Res 3:7–11. doi:10.​3132/​dvdr.​2006.​010
  • Speakman JR (2007) A nonadaptive scenario explaining the genetic predisposition to obesity: the “predation release” hypothesis. Cell Metab 6:5–12. doi:10.​1016/​j.​cmet.​2007.​06.​004
  • Speakman JR, Hambly C (2007) Starving for life: what animal studies can and cannot tell us about the use of caloric restriction to prolong human lifespan. J Nutr 137:1078–1086
  • Speakman JR, Rossi F (1999) No support for socio-physiological suppression effect on metabolism of paired white mice (Mus sp.). Funct Ecol 13:373–382. doi:10.​1046/​j.​1365-2435.​1999.​00322.​x
  • Speakman JR, Gidney A, Bett J, Mitchell IP, Johnson MS (2001) Limits to sustained energy intake IV. Effect of variation in food quality on lactating mice Mus musculus. J Exp Biol 204:1957–1965
  • Sucajtys-Szulc E, Goyke E, Korczynska J, Stelmanska E, Rutkowski B (2008) Chronic food restriction differentially affects NPY mRNA level in neurons of the hypothalamus and in neurons that innervate liver. Neurosci Lett 433:174–177. doi:10.​1016/​j.​neulet.​2008.​01.​004
  • Tucci V, Hardy A, Nolan PM (2006) A comparison of physiological and behavioural parameters in C57BL/6J mice undergoing food or water restriction regimes. Behav Brain Res 173:22–29. doi:10.​1016/​j.​bbr.​2006.​05.​031
  • Veloso C, Bozinovic F (1993) Dietary and digestive constraints on basal energy metabolism in a small herbivorous rodent. Ecology 74:2003–2010. doi:10.​2307/​1940843
  • Wang DH, Wang YS, Wang ZW (2000) Metabolism and thermoregulation in the Mongolian gerbil Meriones unguiculatus. Acta Theriol 45:183–192
  • Weindruch R, Sohal RS (1997) Caloric intake and aging. N Engl J Med 337:986–994. doi:10.​2307/​1940843
  • Yang H, Youm YH, Nakata C, Dixit VD (2007) Chronic caloric restriction induces forestomach hypertrophy with enhanced ghrelin levels during aging. Peptides 28:1931–1936. doi:10.​1016/​j.​peptides.​2007.​07.​030
  • Zhang LN, Wang DH (2008) Effects of food restriction and refeeding on energy balance regulation in Mongolian gerbils Meriones unguiculatus. BFDG Abstracts/Appetite 51:751–764. doi:10.​1016/​j.​appet.​2008.​05.​032
  • Zhao ZJ, Cao J (2009) Plasticity in energy budget and behavior in Swiss mice and striped hamsters under stochastic food deprivation and refeeding. Comp Biochem Physiol 154:A84–A91. doi:10.​1016/​j.​cbpa.​2009.​05.​004
  • Zhao ZJ, Wang DH (2005) Short photoperiod enhances thermogenic capacity in Brandt’s voles. Physiol Behav 85:143–149. doi:10.​1016/​j.​physbeh.​2005.​03.​014
  • Zhao ZJ, Wang DH (2006) Short photoperiod influences energy intake and serum leptin level in Brandt’s voles (Microtus brandtii). Horm Behav 49:463–469. doi:10.​1016/​j.​yhbeh.​2005.​10.​003
  • Zhao ZJ, Wang DH (2007) Effects of diet quality on energy budgets and thermogenesis in Brandt’s voles. Comp Biochem Physiol 148:A168–A177. doi:10.​1016/​j.​cbpa.​2007.​04.​001
  • Zhao ZJ, Cao J, Tian Y, Wang RR, Wang GY (2009a) Effects of stochastic food deprivation on energy budget, body mass and activity in Swiss mice. Current Zool 55:249–257
  • Zhao ZJ, Cao J, Wang GY, Ma F, Meng XL (2009b) Effect of random food deprivation and re-feeding on energy metabolism and behavior in mice. Acta Theriol Sin 29:277–285 (Chinese with English summary)

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-de195eab-9e16-498e-bbb7-92340eb58ec1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.