PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 03 |

Tytuł artykułu

Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Salinity, a severe environmental factor, has limited the growth and productivity of crops. Many compounds have been applied to minimize the harmful effects of salt stress on plant growth. An experiment was conducted to investigate the interactive effects of exogenous ascorbic acid (AsA) and gibberellic acid (GA3) on common bean (Phaseolus vulgaris L. cv. Naz) seedlings under salt stress. The changes of growth parameters, photosynthetic and non-photosynthetic pigments and potassium content showed that the addition of 1 mM AsA and/or 0.05 mM GA3 considerably decreased the oxidative damage in common bean plants treated with 200 mM NaCl. The NaCl-stressed seedlings exposed to AsA or GA3, specifically in their combination, exhibited an improvement in sodium accumulation in both roots and shoots, as compared to NaCl-treated plants. NaCl treatment increased hydrogen peroxide (H2O2) content and lipid peroxidation indicated by accumulation of malondialdehyde (MDA), whereas the interaction of AsA with GA3 decreased the amounts of MDA and H2O2. In the meantime, interactive effect of these substances enhanced protein content and the activity of the antioxidant enzyme, guaiacol peroxidase, in common bean plants under salt stress. It was concluded that synergistic interaction between AsA and GA3 could alleviate the adverse effects of salinity on P. vulgaris seedlings.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

03

Opis fizyczny

p.667-677,fig.,ref.

Twórcy

  • Department of Biology, Faculty of Science, Damghan Branch, Islamic Azad University, Damghan, Iran
autor
  • Department of Biology, Faculty of Science, Damghan Branch, Islamic Azad University, Damghan, Iran
autor
  • Department of Biology, Faculty of Science, Damghan Branch, Islamic Azad University, Damghan, Iran
  • Department of Biology, Faculty of Science, Damghan Branch, Islamic Azad University, Damghan, Iran

Bibliografia

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94. doi:10.1126/science.1118642
  • Aldesuquy HS (1995) Hormones induced modifications in the response of wheat flag leaf area to NaCl. Biol Plant 387:605–611. doi:10.1007/BF02908845
  • Arnon DT (1949) Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. doi: 10.1104/pp.24.1.1
  • Arshi A, Abdin MZ, Iqbal M (2005) Ameliorative effects of CaCl2 on growth, ionic relations, and proline content of senna under salinity stress. J Plant Nutr 28:101–125. doi:10.1081/PLN-200042185
  • Ashraf M, Karim F, Rasul E (2002) Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regul 36(1):49–59. doi:10.1023/A:1014780630479
  • Athar HR, khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63(1–3):224–231. doi:10.1016/j.envexpbot.2007.10.018
  • Athar HR, khan A, AshrafM(2009) Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. J Plant Nutr 32(11):1799–1817. doi:10.1080/01904160903242334
  • Bartoli CG, Yu JP, Gomez F, Fernandez L, Mcintosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631. doi:10.1093/jxb/erl005
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886. doi:10.1126/science.8266079
  • Dubey RS (2005) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Photosynthesis handbooks. CRC Press, New York, pp 717–718
  • Fielding JL, Hall J (1978) A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum. J Exp Bot 29:969–981. doi:10.1093/jxb/29.4.969
  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121. doi: 10.1146/annurev.pp.28.060177.000513
  • Harinasut P, Poonsopa D, Roengmonkgol K, Charoensatapom R (2003) Salinity effects on antioxidant enzymes in mulberry cultivar. Sci Asia 29:109–113. doi:10.2306/scienceasia1513-1874.2003.29.109
  • Hendry GAF, Grime JP (1993) Methods in comparative plant ecology. Marcel Dekker, New York, p 282
  • Hernandez JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257. doi:10.1034/j.1399-3054.2002.1150211.x
  • Huang Y, Bie ZL, Liu ZX, Zhen A, Jiao XR (2011) Improving cucumber photosynthetic capacity under NaCl stress by grafting onto two salt-tolerant pumpkin root stocks. Biol Plant 55(2):285–290. doi:10.1007/s10535-011-0040-8
  • Kang G, Wang C, Sun G, Wang Z (2003) Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exp Bot 50:9–15. doi:10.1016/S0098-8472(02)00109-0
  • Kaya CA, Tuna L, Alves AAC (2006) Gibberellic acid improves water deficit tolerance in maize plants. Acta Physiol Plant 28(4):331–337. doi:10.1007/s11738-006-0029-7
  • Khan TA, Mazid M, Mohammad F (2011) A review of ascorbic acid potentialities against oxidative stress induced in plants. J Agrobiol 28(2):97–111. doi:10.2478/v10146-011-0011-x
  • Kramer GF, Norman HA, Krizek DT, Mirecki RM (1991) Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochem 30:2101–2108. doi: 10.1016/0031-9422(91)83595-C
  • Li JR, Yu K, Wei JR, Ma Q, Wang BQ, Yu D (2010) Gibberellin retards chlorophyll degradation during senescence of Paris polyphylla. Biol Plant 54(2):395–399. doi:10.1007/s10535-010-0072-5
  • Liu Y, Xiong Y, Bassham DC (2009) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5(7):954–963. doi:10.4161/auto.5.7.9290
  • Maggio A, Barbieri G, Raimondi G, De Pascale S (2010) Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72. doi:10.1007/s00344-009-9114-7
  • Magome H, Yamaguchi S, Hanada A, Yuji Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56:613–626. doi:10.1111/j.1365-313X.2008.03627.x
  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618. doi: 10.1007/s11738-008-0173-3
  • Mancinelli AL, Hoff AM, Cottell M (1988) Anthocyanin production in Chl-rich and Chl-poor seedlings. Plant Physiol 86:652–654. doi:10.1104/pp.86.3.652
  • Nasir KM, Siddiqui MH, Mohammad F, Naeem M, Masroor M, Khan A (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defense system and osmoprotectant accumulation. Acta Physiol Plant 32:121–132. doi:10.1007/s11738-009-0387-z
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249
  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–329. doi: 10.1016/j.ecoenv.2004.06.010
  • Price AH, Hendry GA (1991) Ion-catalyzed oxygen radical formation and its possible contribution to drought damages in nine native grasses and three cereals. Plant, Cell Environ 14:477–484. doi: 10.1111/j.1365-3040.1991.tb01517.x
  • Rahman MS, Matsumuro T, Miyake H, Takeoka Y (2000) Salinityinduced ultrastructural alternations in leaf cells of rice (Oryza sativa L.). Plant Prod Sci 3:422–429. doi:10.1626/pps.3.422
  • Renault S, Croser C, Franklin J, Zwiazek J (2001) Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings. Plant Soil 233:261–268. doi:10.1023/A:1010512021353
  • Rodriguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Systems 2:7. doi:10.1186/1746-1448-2-7
  • Roslyakova TV, Molchan OV, Vasekina AV, Lazareva EM, Sokolik AI (2011) Salt tolerance of barley: relations between expression of isoforms of vacuolar Na?/H?-antiporter and 22Na? accumulation. Russ J Plant Physiol 58(1):24–35. doi:10.1134/S1021443711010158
  • Ruiz-Lozano J, Porcel R, Azco´n C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044. doi:10.1093/jxb/ers126
  • Saeidi-Sar S, Khavari-Nejad R, Fahimi H, Ghorbanli M, Majd A (2007) Interactive effects of gibberellin A3 and ascorbic acid on lipid peroxidation and antioxidant enzyme activities in Glycine max seedlings under nickel stress. Russ J Plant Physiol 54:74–79. doi:10.1134/S1021443707010116
  • Santoro A, Lioi MB, Monfregola J, Salzano S, Barbieri R, Ursini MV (2005) L-Carnitine protects mammalian cells from chromosome aberrations but not from inhibition of cell proliferation induced by hydrogen peroxide. Mutation Res 587:16–25. doi:10.1016/j.mrgentox.2005.07.005
  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52(364):2207–2211. doi:10.1093/jexbot/52.364.2207
  • Sibole JV, Montero E, Cabot C, Poschenrieder C, Barcelo J (1998) Role of sodium in the ABA-mediated long-term growth response of bean to salt stress. Physiol Plant 104:299–305. doi:10.1034/j.1399-3054.1998.1040302.x
  • Smirnoff N (1993) The role of active oxygen in the responses of plants to water deficit and desiccation. New Phytol 125:27–58. doi:10.1111/j.1469-8137.1993.tb03863.x
  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669. doi:10.1006/anbo.1996.0175
  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. CRC Crit. Rev. Plant Sci 19:267–290. doi:10.1080/07352680091139231
  • Sreenivasulu N, Grimn B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt tolerant and salt sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442. doi:10.1034/j.1399-3054.2000.100410.x
  • Tejera NA, Campos R, Sanjuan J, Lluch C (2004) Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. J Plant Physiol 161(3):329–338. doi: 10.1078/0176-1617-01050
  • Tejera NA, Campos R, Sanjuan J, Lluch C (2005) Effect of sodium chloride on growth, nutrient accumulation, and nitrogen fixation of common bean plants in symbiosis with isogenic strains. J Plant Nutr 28:1907–1921. doi:10.1080/01904160500306458
  • Tester M, Davenport R (2003) Na tolerance and Na transportation in higher plants. Ann Bot 91:503–527. doi:10.1093/aob/mcg058
  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66. doi: 10.1016/S0168-9452(99)00197-1
  • Williams CH, Twine JR (1960) Flame photometric method for sodium, potassium and calcium. In: Peach K, Tracey MV (eds) Modern methods of plant analysis, vol 5. Springer, Berlin, pp 3–5
  • Younis ME, Hasaneen MNA, Kazamel AMS (2010) Exogenously applied ascorbic acid ameliorates detrimental effects of NaCl and mannitol stress in Vicia faba seedlings. Protoplasma 239:39–48. doi:10.1007/s00709-009-0080-5
  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Ann Rev Plant Physiol Plant Mol Biol 39:439–475. doi:10.1146/annurev.pp.39.060188.002255
  • Zhang T, Gong H, Wen X, Lu C (2010) Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. J Plant Physiol 167:951–958. doi: 10.1016/j.jplph.2009.12.020
  • Zhang X, Jiang D, Zheng C, Dai T, Cao W (2011) Post-Anthesis Salt and combination of salt and waterlogging affect distributions of sugars, amino acids, Na ? and K ? in wheat. Agro Crop Sci 197:31–39. doi:10.1111/j.1439-037X.2010.00438.x
  • Zhang Q, Su LJ, Chen JW, Zeng XQ, Sun XQ, Peng CL (2012) The antioxidative role of anthocyanins in Arabidopsis under highirradiance. Biol Plant 56(1):97–104. doi:10.1007/s10535-012-0022-5
  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of saltstressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533. doi:10.1016/j.plantsci.2004.04.020

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-dd819972-a4da-4924-adb9-0284efa996eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.