PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

Hypoxic stabilization of mRNA is HIFindependent but requires mtROS

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Tissue ischemia can arise in response to numerous physiologic and pathologic conditions. The cellular response to decreased perfusion, most notably a decrease in glucose and oxygen, is important for cellular survival. In response to oxygen deprivation or hypoxia, one of the key response elements is hypoxia inducible factor (HIF) and a key protein induced by hypoxia is vascular endothelial growth factor (VEGF). Under hypoxia, we and others have reported an increase in the half-life of VEGF and other hypoxia related mRNAs including MYC and CYR61; however, the mediator of this response has yet to be identified. For this study, we sought to determine if HIF-mediated transcriptional activity is involved in the mRNA stabilization induced by hypoxia. Methods: HEK293T or C6 cells were cultured in either normoxic or hypoxic (1% oxygen) conditions in the presence of 1 g/L glucose for all experiments. Pharmacological treatments were used to mimic hypoxia (desferroxamine, dimethyloxaloglutamate, CoCl2), inhibit mitochondrial respiration (rotenone, myxothiazol), scavenge reactive oxygen species (ROS; ebselen), or generate mitochondrial ROS (antimycin A). siRNAs were used to knock down components of the HIF transcriptional apparatus. mRNA half-life was determined via actinomycin D decay and real time PCR and western blotting was used to determine mRNA and protein levels respectively. Results: Treatment of HEK293T or C6 cells with hypoxic mimetics, desferroxamine, dimethyloxaloglutamate, or CoCl2 showed similar induction of HIF compared to hypoxia treatment, however, in contrast to hypoxia, the mimetics caused no significant increase in VEGF, MYC or CYR61 mRNA half-life. Knockdown of HIF-alpha or ARNT via siRNA also had no effect on hypoxic mRNA stabilization. Interestingly, treatment of HEK293T cells with the mitochondrial inhibitors rotenone and myxothiazol, or the glutathione peroxidase mimetic ebselen did prevent the hypoxic stabilization of VEGF, MYC, and CYR61, suggesting a role for mtROS in the process. Additionally, treatment with antimycin A, which has been shown to generate mtROS, was able to drive the normoxic stabilization of these mRNAs. Conclusion: Overall these data suggest that hypoxic mRNA stabilization is independent of HIF transcriptional activity but requires mtROS.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-15,fig.,ref.

Twórcy

  • Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
autor
  • Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
autor
  • Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
autor
  • Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA

Bibliografia

  • 1. Bursch W, Karwan A, Mayer M, Dornetshuber J, Frohwein U, Schulte-Hermann R, Fazi B, Di Sano F, Piredda L, Piacentini M, et al. Cell death and autophagy: cytokines, drugs, and nutritional factors. Toxicology. 2008;254(3):147–57.
  • 2. Spasic MR, Callaerts P, Norga KK. AMP-activated protein kinase (AMPK) molecular crossroad for metabolic control and survival of neurons. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 2009;15(4):309–16.
  • 3. Hardie DG. Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr. 2011;93(4):891S–896.
  • 4. Ferretti AC, Larocca MC, Favre C. Nutritional stress in eukaryotic cells: oxidative species and regulation of survival in time of scarceness. Mol Genet Metab. 2012;105(2):186–92.
  • 5. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309.
  • 6. Simon MC, Liu L, Barnhart BC, Young RM. Hypoxia-induced signaling in the cardiovascular system. Annu Rev Physiol. 2008;70:51–71.
  • 7. Simon MC, Ramirez-Bergeron D, Mack F, Hu CJ, Pan Y, Mansfield K. Hypoxia, HIFs, and cardiovascular development. Cold Spring Harb Symp Quant Biol. 2002;67:127–32.
  • 8. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.
  • 9. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72.
  • 10. Yu F, White SB, Zhao Q, Lee FS. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci U S A. 2001;98(17):9630–5.
  • 11. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A. 1998;95(20):11715–20.
  • 12. Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem. 1998;273(19):11619–24.
  • 13. Emerling BM, Platanias LC, Black E, Nebreda AR, Davis RJ, Chandel NS. Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling. Mol Cell Biol. 2005;25(12):4853–62.
  • 14. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–8.
  • 15. Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab. 2005;1(6):393–9.
  • 16. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, Simon MC. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol. 2007;27(3):912–25.
  • 17. Becker LB, vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Phys. 1999;277(6 Pt 2):H2240–6.
  • 18. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res. 2002;91(8):719–26.
  • 19. Waypa GB, Schumacker PT. Role for mitochondrial reactive oxygen species in hypoxic pulmonary vasoconstriction. Novartis Found Symp. 2006;272:176–92 discussion 192–175, 214–177.
  • 20. Ali MH, Schlidt SA, Chandel NS, Hynes KL, Schumacker PT, Gewertz BL. Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. Am J Phys. 1999;277(5 Pt 1):L1057–65.
  • 21. Mansfield KD, Simon MC, Keith B. Hypoxic reduction in cellular glutathione levels requires mitochondrial reactive oxygen species. J Appl Physiol. 2004;97(4):1358–66.
  • 22. Liu L, Simon MC. Regulation of transcription and translation by hypoxia. Cancer biology & therapy. 2004;3(6):492–7.
  • 23. Gorospe M, Tominaga K, Wu X, Fahling M, Ivan M. Post-transcriptional control of the hypoxic response by RNA-binding proteins and MicroRNAs. Front Mol Neurosci. 2011;4:7.
  • 24. Levy NS, Chung S, Furneaux H, Levy AP. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNAbinding protein HuR. J Biol Chem. 1998;273(11):6417–23.
  • 25. Carraway KR, Johnson EM, Kauffmann TC, Fry NJ, Mansfield KD. Hypoxia and hypoglycemia synergistically regulate mRNA stability. RNA Biol. 2017;14(7):938–51.
  • 26. Fry NJ, Law BA, Ilkayeva OR, Holley CL, Mansfield KD. N6-methyladenosine is required for the hypoxic stabilization of specific mRNAs. RNA. 2017;23(9):1444–55.
  • 27. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995;59(3):423–50.
  • 28. Levy AP. Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins. Trends in cardiovascular medicine. 1998;8(6):246–50.
  • 29. Levy AP, Levy NS, Goldberg MA. Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel-Lindau protein. J Biol Chem. 1996;271(41):25492–7.
  • 30. Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem. 1996;271(5):2746–53.
  • 31. Levy AP, Levy NS, Loscalzo J, Calderone A, Takahashi N, Yeo KT, Koren G, Colucci WS, Goldberg MA. Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res. 1995;76(5):758–66.
  • 32. Levy NS, Goldberg MA, Levy AP. Sequencing of the human vascular endothelial growth factor (VEGF) 3′ untranslated region (UTR): conservation of five hypoxia-inducible RNA-protein binding sites. Biochim Biophys Acta. 1997;1352(2):167–73.
  • 33. Goldberg-Cohen I, Furneauxb H, Levy AP. A 40-bp RNA element that mediates stabilization of vascular endothelial growth factor mRNA by HuR. J Biol Chem. 2002;277(16):13635–40.
  • 34. Dibbens JA, Miller DL, Damert A, Risau W, Vadas MA, Goodall GJ. Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell. 1999;10(4):907–19.
  • 35. Arcondeguy T, Lacazette E, Millevoi S, Prats H, Touriol C. VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res. 2013;41(17):7997–8010.
  • 36. Yao P, Potdar AA, Ray PS, Eswarappa SM, Flagg AC, Willard B, Fox PL. The HILDA complex coordinates a conditional switch in the 3′-untranslated region of the VEGFA mRNA. PLoS Biol. 2013;11(8):e1001635.
  • 37. Pages G, Berra E, Milanini J, Levy AP, Pouyssegur J. Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J Biol Chem. 2000;275(34):26484–91.
  • 38. Usansky J, Desai A, Tang-Liu D: PK functions for Microsoft excel. In., PK functions for Micorsoft excel edn. Last Accessed January 2016: https://www.pharmpk.com/soft.html.
  • 39. Staab A, Loffler J, Said HM, Katzer A, Beyer M, Polat B, Einsele H, Flentje M, Vordermark D. Modulation of glucose metabolism inhibits hypoxic accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha). Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft [et al]. 2007;183(7):366–73.
  • 40. Gao W, Ferguson G, Connell P, Walshe T, O'Brien C, Redmond EM, Cahill PA. Glucose attenuates hypoxia-induced changes in endothelial cell growth by inhibiting HIF-1alpha expression. Diabetes & vascular disease research : official journal of the International Society of Diabetes and Vascular Disease. 2014;11(4):270–80.
  • 41. Malhotra R, Tyson DG, Sone H, Aoki K, Kumagai AK, Brosius FC, 3rd: Glucose uptake and adenoviral mediated GLUT1 infection decrease hypoxia-induced HIF-1alpha levels in cardiac myocytes. J Mol Cell Cardiol 2002, 34(8):1063–1073.
  • 42. Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, Schumacker PT. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ Res. 2006;99(9):970–8.
  • 43. Bleier L, Drose S. Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta. 2013;1827(11–12):1320–31.
  • 44. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275(33):25130–8.
  • 45. Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, Chandel NS. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol. 2007;177(6):1029–36.
  • 46. Masuda K, Abdelmohsen K, Gorospe M. RNA-binding proteins implicated in the hypoxic response. J Cell Mol Med. 2009; 13(9A):2759–69.
  • 47. Levy AP, Levy NS, Iliopoulos O, Jiang C, Kaplin WG, Jr., Goldberg MA: Regulation of vascular endothelial growth factor by hypoxia and its modulation by the von Hippel-Lindau tumor suppressor gene. Kidney Int 1997, 51(2):575–578.
  • 48. Osera C, Martindale JL, Amadio M, Kim J, Yang X, Moad CA, Indig FE, Govoni S, Abdelmohsen K, Gorospe M, et al. Induction of VEGFA mRNA translation by CoCl2 mediated by HuR. RNA Biol. 2015;12(10):1121–30.
  • 49. Clark JE, Sarafraz N, Marber MS. Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. Pharmacol Ther. 2007;116(2):192–206.
  • 50. Frevel MA, Bakheet T, Silva AM, Hissong JG, Khabar KS, Williams BR. p38 mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol Cell Biol. 2003;23(2):425–36.
  • 51. Kulisz A, Chen N, Chandel NS, Shao Z, Schumacker PT. Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. American journal of physiology Lung cellular and molecular physiology. 2002;282(6):L1324–9.
  • 52. Mansfield KD, Keene JD. The ribonome: a dominant force in co-ordinating gene expression. Biology of the cell / under the auspices of the European Cell Biology. Organization. 2009;101(3):169–81.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-dcf15fc5-eec5-4ce0-a0a6-31e796fcc586
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.