PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 67 | 1 |

Tytuł artykułu

Plant functional trait response to habitat change and grazing in a semiarid grassland: unravelling species turnover and intraspecific variation effects

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Plant community assembly is determined by species turnover and intraspecific trait variations (ITV) controlled by environment changes. However, little is known about how species turnover and ITV affect the responses of plant community to habitat changes and grazing disturbance in semiarid grasslands. Here, we measured five functional plant traits in four typical grassland habitats under fencing and grazing disturbance in a semiarid grassland, Northern China, including plant height, specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC) and leaf carbon: nitrogen ratio (C:N). We also calculated the community weighted means (CWM) and non-weighted means (CM) of all traits and examined the relative roles of species turnover and ITV in affecting the responses of community traits to habitat changes and grazing disturbance. Our results showed that the CWM and CM values of five functional traits differed with grassland habitat changes. As compared to other grasslands, the Stipa steppe had the higher plant height, the sandy grassland had the higher SLA and lower LDMC, and the meadow had the lower LNC and higher C:N. Grazing decreased plant height across grassland habitats, as well as decreased SLA and increased LDMC in meadow. The responses of all community-level traits to habitat changes were driven by species turnover, while the responses of phenotypic traits (height, SLA and LDMC) to grazing were determined by both species turnover and ITV. So, we argue that ITV should be considered when understanding plant community assembly under grazing disturbance regime in semiarid grasslands.

Wydawca

-

Rocznik

Tom

67

Numer

1

Opis fizyczny

p.62-74,fig.,ref.

Twórcy

autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
  • University of the Chinese Academy of Sciences, Beijing 100039, China
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
  • Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
  • University of the Chinese Academy of Sciences, Beijing 100039, China
autor
  • Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
  • University of the Chinese Academy of Sciences, Beijing 100039, China
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
  • Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China

Bibliografia

  • Ackerly D.D. 2010 Community assembly, niche conservatism, and adaptive evolution in changing environments – Int.J. Plant Sci. 164(3 Suppl): S165–S184.
  • Adler P.B., Milchunas D.G., Lauenroth W.K., Sala O.E., Burke I.C. 2004 – Functional traits of graminoids in semi-arid steppes: a test of grazing histories – J. Appl. Ecol. 41: 653–663.
  • Albert C.H., Grassein F., Schurr F.M., Vieilledent G., Violle C. 2011 − When and how should intraspecific variability be considered in trait-based plant ecology? – Perspect. Plant Ecol. 13: 217–225.
  • An Y.A, Wan S.Q, Zhou X.H, Subedar A.A., Wallace L.L., Luo Y.Q. 2010 − Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming − Global Change Biol. 11: 1733–1744.
  • Auger S., Shipley B. 2013 − Inter‐specific and intra‐specific trait variation along short environmental gradients in an old‐growth temperate forest – J. Veg. Sci. 24: 419–428.
  • Bartolome J.W., Fehmi J.S., Jackson R.D., Allen-Diaz B. 2010 − Response of a native perennial grass stand to disturbance in California's coast range grassland – Restor. Ecol.12: 279–289.
  • Buschmann H., Keller M., Porret N., Dietz H., Edwards P.J. 2005 − The effect of slug grazing on vegetation development and plant species diversity in an experimental grassland – Funct. Ecol. 19: 291–298.
  • Cingolani A., Posse G., Collante M.B. 2005 − Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands − J. Appl. Ecol. 42: 50–59.
  • Cochard A., Pithon J., Jagaille M., Beaujouan V., Pain G., Daniel H. 2017 − Grassland plant species occurring in extensively managed road verges are filtered by urban environments − Plant Ecol. Divers. 10: 217–119.
  • Conti G., Díaz S. 2013 − Plant functional diversity and carbon storage - an empirical test in semi‐arid forest ecosystems – J. Ecol. 101: 18–28.
  • Cui X., Wang Y., Niu H., Wu J., Wang S., Schnug E., Rogasik J., Fleckenstein J., Tang Y. 2005 − Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia – Ecol. Res. 20: 519–527.
  • Dechaine J.M., Brock M.T., Iniguez-luy F.L., Weinig C. 2014 − Quantitative trait loci a environment interactions for plant morphology vary over ontogeny in Brassica rapa − New Phytol. 201: 657–669.
  • Díaz S., Noy‐Meir I., Cabido M. 2001 − Can grazing response of herbaceous plants be predicted from simple vegetative traits? – J. Appl. Ecol. 38: 497–508.
  • Finegan B., Peña-Claros M., DeOliveira A., Ascarrunz N., Bret-Harte M.S., Carreño R.G.B., Casanoves F., Diaz S., Eguiguren V. Paul., Fernandez M.F., Licona J., Lorenzo L., Negret B., Carita V.M., Poorter L. 2015 − Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses – J. Ecol. 103: 191–201.
  • Garnier E., Laurent G., Bellmann A., Debain S., Berthelier P., Ducout B., Roumet C., Navas M.L. 2001 − Consistency of species ranking based on functional leaf traits − New Phytol.152: 69–83.
  • Hayes G.F., Holl K.D. 2003 − Cattle grazing impacts on annual forbs and vegetation composition of Mesic grasslands in California – Conserv. Biol.17: 1694–1702.
  • Jiao F., Wen Z.M., An S.S. 2011 − Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China – Catena, 86: 110–116.
  • Jung V., Violle C., Mondy C., Hoffmann L., Muller S. 2010 − Intraspecific variability and trait-based community assembly – J. Ecol. 98: 1134–1140.
  • Kazakou E., Vile D., Shipley B., Gallet C., Garnier E. 2010 − Covariations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession − Funct. Ecol. 20: 21–30.
  • Kichenin E., Wardle D.A., Peltzer D.A., Morse C.W., Freschet G.T., Kitajima K. 2013 − Contrasting effects of plant inter‐and intraspecific variation on community‐level trait measures along an environmental gradient − Funct. Ecol. 27: 1254–1261.
  • Lamas M.I.B., Larreguy C., Carrera A.L., Bertiller M.B. 2013 − Changes in plant cover and functional traits induced by grazing in the arid Patagonian Monte − Acta Oecol. 51: 66–73.
  • Laughlin D.C., Joshi C., Bodegom, P.M., Bastow, Z.A., Fulé, P.Z., Fukami T. 2012 − A predictive model of community assembly that incorporates intraspecific trait variation – Ecol. Lett. 15: 1291–1299.
  • Lavorel S., Grigulis K. 2012 − How fundamental plant functional trait relationships scale‐up to trade‐offs and synergies in ecosystem services – J. Ecol. 100: 128–140.
  • Lepš J., Bello F., Šmilauer P., Doležal J. 2011 − Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects – Ecography, 34: 856–863.
  • Lienin P., Kleyer M. 2012 − Plant trait responses to the environment and effects on ecosystem properties − Basic Appl. Ecol. 13: 301–311.
  • Lohbeck M., Poorter L., Lebrija-Trejos E., Martínez-Ramos M., Meave J.A., Paz H., Perez-Garcia E.A., Romero-Pérez I.E., Tauro A., Bongers F. 2013 − Successional changes in functional composition contrast for dry and wet tropical forest – Ecology, 94: 1211–1216.
  • Lü X.T., Hu Y.Y., Zhang H.Y., Wei H.W., Hou S.L., Yang G.J., Liu Z.Y., Wang X.B. 2018 − Intraspecific variation drives community-level stoichiometric responses to nitrogen and water enrichment in a temperate steppe − Plant Soil, 423: 307–315.
  • Mason N.W.H., Richardson S.J., Peltzer D.A., Bello F.D., Wardle D.A., Allen R.B. 2012 − Changes in coexistence mechanisms along a long‐term soil chronosequence revealed by functional trait diversity – J. Ecol. 100: 678–689.
  • Mcculley R.L., Burke I.C., Lauenroth W.K. 2009 − Conservation of nitrogen increases with precipitation across a major grassland gradient in the central great plains of North America – Oecologia, 159: 571–581.
  • Mcgill B.J., Enquist B.J., Weiher E., Westoby M. 2006 − Response to kearney and porter: both functional and community ecologists need to do more for each other − Trends Ecol. Evol. 21: 482–483.
  • Milcu A., Roscher C., Gessler A., Bachmann D., Gockele A., Guderle M., Landais D., Piel C., Escape C., Devidal S., Ravel O., Buchmann N., Gleixner G., Hildebrandt A., Roy J. 2014 − Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes – Ecol. Lett. 17: 435–444.
  • Pérez-Harguindeguy N., Díaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Bret-Harte M.S., Cornwell W.K., Craine J.M., Gurvich D.E., Urcelay C., Veneklaas E.J., Reich P.B., Poorter L., Wright I. J., Ray P., Enrico L., Pausas J.G., de Vos A.C., Buchmann N., Funes G., Quétier F., Hodgson J.G., Thompson K., Morgan H.D., Steege H., Heijden M.G.A., Sack L., Blonder B., Poschlod P., Vaieretti M.V., Conti G., Staver A.C., Aquino S., Cornelissen J.H.C. 2013 − New handbook for standardised measurement of plant functional traits worldwide – Aust. J. Bot. 61: 167–234.
  • Pérez-Harguindeguy N., Díaz S., Vendramini F., Cornelissen J.H.C., Gurvich D.E., Cabido M. 2003 − Leaf traits and herbivore selection in the field and in cafeteria experiments – Austral. Ecol.28: 642–650.
  • Pérez-Ramos I.M., Roumet C., Cruz P., Blanchard A., Autran P., Garnier E. 2012 − Evidence for a ‘plant community economics spectrum’ driven by nutrient and water limitations in a Mediterranean rangeland of southern France – J. Ecol.100: 1315–1327.
  • Poorter H., Evans J.R. 1998 − Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area – Oecologia, 116: 26–37.
  • Poorter H., Jong R.D. 2010 − A Comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity − New Phytol.143: 163–176.
  • Poorter H., Niinemets U., Poorter L., Wright I.J., Villar R. 2009 − Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis − New Phytol.182: 565–588.
  • Shipley B. 2002 − Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance − Funct Ecol.16: 682–689.
  • Spasojevic M.J., Grace J.B., Harrison S., Damschen E.I., Salguero‐Gómez R. 2014 − Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients – J. Ecol.102: 447–455.
  • Stubbs W.J., Wilson J.B. 2004 − Evidence for limiting similarity in a sand dune community – J. Ecol. 92: 557–567.
  • Vendramini F., Vendramini F., Sandra D.A., Gurvich D.E., Wilson P.J., Thompson K., Hodgson J.G. 2010 − Leaf traits as indicators of resource-use strategy in flora with succulent species − New Phytol.154: 147–157.
  • Violle C., Enquist B.J., Mcgill B.J., Jiang L., Albert C.H., Hulshof C., Julie V.,Messier J. 2012 − The return of the variance: intraspecific variability in community ecology − Trends Ecol. Evol. 27: 244–252.
  • Volf M., Redmond C., Albert A.J., LeBagousse-Pinguet Y., Biella P., Gotzenberger L., Hrazsky Z., Janecek S., Klimesova J., Leps J., Sebelikova L., Vlasata T., deBello F. 2016 − Effects of long- and short-term management on the functional structure of meadows through species turnover and intraspecific trait variability – Oecologia, 180: 941–950.
  • Wan H., Bai Y., Schönbach P., Gierus M., Taube F. 2011 − Effects of grazing management system on plant community structure and functioning in a semiarid steppe: scaling from species to community − Plant Soil.340: 215–226.
  • Wang G.J., Wang S.P., Hao Y.B., Cai X.C. 2005 − Effect of grazing on the plant functional group diversity and community biomass and their relationship along a precipitation gradient in Inner Mongolia Steppe − Acta Ecol Sin.25: 1649–1656.
  • Wardle D.A., Barker G.M., Bonner K.I., Nicholson K.S. 1998 − Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? – J. Ecol.86: 405–420.
  • Webb C.T., Hoeting J.A., Ames G.M., Pyne M.I., Poff L.N. 2010 − A structured and dynamic framework to advance traits‐based theory and prediction in ecology – Ecol. Lett.13: 267–283.
  • Weiher E., Keddy P.A. 1995 − Assembly rules, null models, and trait dispersion: new questions from old patterns – Oikos, 74: 159–164.
  • Wilson P.J., Thompson K., Hodgson J.G. 1999 − Specific leaf area and leaf dry matter content as alternative predictors of plant strategies − New Phytol.143: 155–162.
  • Wright I.J., Reich P.B., Westoby M. 2001 − Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low- rainfall and high- and low-nutrient habitats – Funct. Ecol.15: 423–434.
  • Xu Z., Wan S., Ren H., Han X., Li M.H., Cheng W., Jiang Y. 2012 − Effects of water and nitrogen addition on species turnover in Temperate grasslands in Northern China − PloS ONE, 7: e39762.
  • Zhang J., Zuo X.A., Yang Y., Yue X.Y., Zhang J., Lv P., Zhou X., Lian J., Liu L.X., He Z.Q. 2017a − Response of plant community functional traits in different grasslands to enclosure and grazing in Horqin Sandy Land − Trans.CSAE −33: 261–268.
  • Zhang J., Zuo X.A., Zhou X., Lv P., Lian J., Yue X.Y. 2017b − Long-term grazing effects on vegetation characteristics and soil properties in a semiarid grassland, northern China – Environ. Monit. Assess.189: 216.
  • Zheng S.X., Ren H.Y., Lan Z.C., Li W.H., Wang K.B., Bai Y.F. 2010 − Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community – Biogeosciences, 7: 1117–1132.
  • Zuo X.A., Yue X.Y., Lv P., Yu Q., Chen M., Zhang J., Luo Y.Q., Wang S.K., Zhang J. 2017 − Contrasting effects of plant inter- and intraspecific variation on community trait responses to restoration of a sandy grassland ecosystem – Ecol. Evol.7: 1125–1134.
  • Zuo X.A., Zhao X.Y., Zhao H.L., Zhang T.H., Li Y.L., Wang S.K., Li W.J., Powers R. 2012 − Scale dependent effects of environmental factors on vegetation pattern and composition in Horqin Sandy Land, Northern China – Geoderma, 173-174: 1–9.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-dc28f98d-a7c3-490c-82e2-10851d40fdc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.