PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 164 | 09 |

Tytuł artykułu

Modele stosowane do opisu architektury drzew i możliwości ich praktycznego wykorzystania w leśnictwie

Treść / Zawartość

Warianty tytułu

EN
Tree architecture descriptive models with forestry applications

Języki publikacji

PL

Abstrakty

EN
The qualitative and quantitative descriptive models of tree architecture differ in the degree of complexity and the way of mapping tree structure, and thus, are of varied use in forestry. The qualitative, Hallé−Oldeman models, serve as a framework for analyzing tree architecture and help define the different components of a tree branching system. Among the quantitative models (here: horizontal, three−dimensional or vertical ones) the horizontal representations are the most parsimonious, and proved to be useful for examining the effects of competition process and the light conditions within the forest understory. The three−dimensional representations (Quantitative Structural Models; QSMs) have the widest range of applications as they may be used for deriving both the two−dimensional traits (such as crown length or branch height) and the volumetric traits (such as tree crown volume or wood volume). At the same time they are the most complex ones. The vertical models were used to study the impact of local terrain shape and wind conditions on tree architecture, but the way of deriving such models from the QSMs seems excessively laborious. However, we highlight here also a photogrammetric method, which allows to obtain an analogous model in much simpler way. Both three−dimensional and vertical representations are useful for determining the wood quality features. Three−dimensional models can be used to accurately measure tree woody biomass, while horizontal models can be used for reliable biomass estimations.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

164

Numer

09

Opis fizyczny

s.707-718,rys.,tab.,bibliogr.

Twórcy

autor
  • Zakład Geomatyki, Instytut Badawczy Leśnictwa, Sękocin Stary, ul. Braci Leśnej 3, 05-090 Raszyn
  • Zakład Geomatyki, Instytut Badawczy Leśnictwa, Sękocin Stary, ul. Braci Leśnej 3, 05-090 Raszyn
autor
  • Katedra Bioróżnorodności Leśnej, Uniwersytet Rolniczy w Krakowie, al. 29 Listopada 46, 31-425 Kraków

Bibliografia

  • Barbeito I., Collet C., Ningre F. 2014. Crown responses to neighbor density and species identity in a young mixed deciduous stand. Trees-Structure and Function 28: 1751-1765. DOI: https://doi.org/10.1007/s00468-014-1082-2.
  • Barczi J. F., Rey H., Griffon S., Jourdan C. 2018. DigR: a generic model and its open source simulation software to mimic three-dimensional root-system architecture diversity. Annals of Botany 121: 1089-1104. DOI: https:// doi.org/10.1093/aob/mcy018.
  • Barthélémy D. 1991. Levels of organization and repetition phenomena in seed plants. Acta Biotheoretica 39: 309-323. DOI: https://doi.org/10.1007/bf00114184.
  • Barthélémy D., Caraglio Y. 2007. Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany 99: 375-407. DOI: https://doi.org/10.1093/aob/mcl260.
  • Bayer D., Seifert S., Pretzsch H. 2013. Structural crown properties of Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L. ) in mixed versus pure stands revealed by terrestrial laser scanning. Trees-Structure and Function 27: 1035-1047. DOI: https://doi.org/10.1007/s00468-013-0854-4.
  • Bell A. D. 1991. Plant form: an illustrated guide to flowering plant morphology. Oxford University Press, Oxford.
  • Bournez E., Landes T., Saudreau M., Kastendeuch P., Najjar G. 2017. From TLS point clouds to 3D models of trees: A comparison of existing algorithms for 3D tree reconstruction. ISPRS Archives Proceedings of the 7th Workshop on 3D Virtual Reconstruction and Visualization of Complex Architectures XLII-2/W3: 113-120. DOI: https://doi.org/10.5194/isprs-archives-XLII-2-W3-113-2017.
  • Calders K., Origo N., Burt A., Disney M., Nightingale J., Raumonen P., Akerblom M., Malhi Y., Lewis P. 2018. Realistic Forest Stand Reconstruction from Terrestrial LiDAR for Radiative Transfer Modelling. Remote Sensing 10. DOI: https://doi.org/10.3390/rs10060933.
  • Coutts M. P. 1983. Root architecture and tree stability. Plant and Soil 71: 171-188. DOI: https://doi.org/10.1007/bf02182653.
  • Cruiziat P., Cochard H., Ameglio T. 2002. Hydraulic architecture of trees: main concepts and results. Annals of Forest Science 59: 723-752. DOI: https://doi.org/10.1051/forest:2002060.
  • Dassot M., Colin A., Santenoise P., Fournier M., Constant T. 2012. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Computers and Electronics in Agriculture 89: 86-93. DOI: https://doi.org/10.1016/j.compag.2012.08.005.
  • Disney M. I., Vicari M. B., Burt A., Calders K., Lewis S. L., Raumonen P., Wilkes P. 2018. Weighing trees with lasers: advances, challenges and opportunities. Interface Focus 8. DOI: https://doi.org/10.1098/rsfs.2017.0048.
  • Feng L., de Reffye P., Dreyfus P., Auclair D. 2012. Connecting an architectural plant model to a forest stand dynamics model-application to Austrian black pine stand visualization. Annals of Forest Science 69: 245-255. DOI: https://doi.org/10.1007/s13595-011-0144-5.
  • Fisher J. B., Hibbs D. E. 1982. Plasticity of tree architecture – specific and ecological variations found in Aubreville’s model. American Journal of Botany 69: 690-702. DOI: https://doi.org/10.2307/2442959.
  • Fleck S., Moelder I., Jacob M., Gebauer T., Jungkunst H. F., Leuschner C. 2011. Comparison of conventional eight-point crown projections with LiDAR-based virtual crown projections in a temperate old-growth forest. Annals of Forest Science 68: 1173-1185. DOI: https://doi.org/10.1007/s13595-011-0067-1.
  • Forrester D. I., Tachauer I. H. H., Annighoefer P., Barbeito I., Pretzsch H., Ruiz-Peinado R., Stark H., Vacchiano G., Zlatanov T., Chakraborty T., Saha S., Sileshi G. W. 2017. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management 396: 160-175. DOI: https://doi.org/10.1016/j.foreco.2017.04.011.
  • Gazda A., Kędra K. 2017. Tree architecture description using a single-image photogrammetric method. Dendrobiology 78: 124-135. DOI: https://doi.org/10.12657/denbio.078.012.
  • Grote R. 2003. Estimation of crown radii and crown projection area from stem size and tree position. Annals of Forest Science 60: 393-402. DOI: https://doi.org/10.1051/forest:2003031.
  • Hackenberg J., Spiecker H., Calders K., Disney M., Raumonen P. 2015. SimpleTree-An Efficient Open Source Tool to Build Tree Models from TLS Clouds. Forests 6: 4245-4294. DOI: https://doi.org/10.3390/f6114245.
  • Hallé F. 2001. Branching in Plants: Springer Berlin Heidelberg, Berlin, Heidelberg.
  • Hallé F., Oldeman R. A. A. 1970. Essai sur I’Architecture et la Dynamique de Croissance des Arbres Tropicaux. Paris, Masson.
  • Hallé F., Oldeman R. A. A., Tomlinson P. B. 1978. Tropical trees and forests: an architectural analysis. Springer-Verlag, Berlin.
  • Jackson T., Shenkin A., Kalyan B., Zionts J., Calders K., Origo N., Disney M., Burt A., Raumonen P., Malhi Y. 2019a. A new architectural perspective on wind damage in a natural forest. Frontiers in Forests and Global Change 1. DOI: https://doi.org/10.3389/ffgc.2018.00013.
  • Jackson T., Shenkin A., Wellpott A., Calders K., Origo N., Disney M., Burt A., Raumonen P., Gardiner B., Herold M., Fourcaud T., Malhi Y. 2019b. Finite element analysis of trees in the wind based on terrestrial laser scanning data. Agricultural and Forest Meteorology 265: 137-144. DOI: https://doi.org/10.1016/j.agrformet. 2018.11.014.
  • Kędra K. 2019. Modele stosowane do opisu architektury drzew i możliwości praktycznego wykorzystania. Rozprawa doktorska. APD UR, Kraków.
  • Kędra K., Barbeito I., Dassot M., Vallet P., Gazda A. 2019. Single-image photogrammetry for deriving tree architectural traits in mature forest stands: a comparison with terrestrial laser scanning. Annals of Forest Science 76: 5. DOI: https://doi.org/10.1007/s13595-018-0783-x.
  • Kędra K., Barbeito I., Gazda A. 2016. New angular competition index and tree crown projection model. 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA): 106-109.
  • Lee C. A., Voelker S., Holdo R. M., Muzika R. M. 2014. Tree architecture as a predictor of growth and mortality after an episode of red oak decline in the Ozark Highlands of Missouri, U.S.A. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 44: 1005-1012. DOI: https://doi.org/10.1139/cjfr-2014-0067.
  • Liang X. L., Wang Y. S., Jaakkola A., Kukko A., Kaartinen H., Hyyppä J., Honkavaara E., Liu J. B. 2015. Forest Data Collection Using Terrestrial Image-Based Point Clouds From a Handheld Camera Compared to Terrestrial and Personal Laser Scanning. IEEE Transactions on Geoscience and Remote Sensing 53: 5117-5132. DOI: https://doi.org/10.1109/tgrs.2015.2417316.
  • Liang X. L., Wang Y. S., Pyörälä J., Lehtomäki, M., Yu X. W., Kaartinen H., Kukko A., Honkavaara E., Issaoui A. E. I., Nevalainen O., Vaaja M., Virtanen J. P., Katoh M., Deng S. Q. 2019. Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements. Forest Ecosystems 6. DOI: https://doi.org/10.1186/s40663-019-0173-3.
  • Loehle C. 2016. Biomechanical constraints on tree architecture. Trees-Structure and Function 30: 2061-2070. DOI: https://doi.org/10.1007/s00468-016-1433-2.
  • Martin-Ducup O., Schneider R., Fournier R. A. 2016. Response of sugar maple (Acer saccharum, Marsh.) tree crown structure to competition in pure versus mixed stands. Forest Ecology and Management 374: 20-32. DOI: https://doi.org/10.1016/j.foreco.2016.04.047.
  • Martin-Ducup O., Schneider R., Fournier R. A. 2018. Analyzing the Vertical Distribution of Crown Material in Mixed Stand Composed of Two Temperate Tree Species. Forests 9. DOI: https://doi.org/10.3390/f9110673.
  • Mattheck C. 1998. Design in Nature: Learning from Trees. Springer, Berlin.
  • Oldeman R. A. A. 1990. Forests: elements of silvology. Springer-Verlag, Berlin.
  • Parsons R. A., Mell W. E., McCauley P. 2011. Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior. Ecological Modelling 222: 679-691. DOI: https://doi.org/10.1016/j.ecolmodel.2010.10.023.
  • van de Peer T., Verheyen K., Kint V., Van Cleemput E., Muys B. 2017. Plasticity of tree architecture through interspecific and intraspecific competition in a young experimental plantation. Forest Ecology and Management 385: 1-9. DOI: https://doi.org/10.1016/j.foreco.2016.11.015.
  • Piboule A., Collet C., Frochot H., Dhote J. F. 2005. Reconstructing crown shape from stem diameter and tree position to supply light models. I. Algorithms and comparison of light simulations. Annals of Forest Science 62: 645-657. DOI: https://doi.org/10.1051/forest:2005071.
  • Poorter L., Bongers L., Bongers F. 2006. Architecture of 54 moist-forest tree species: Traits, trade-offs, and functional groups. Ecology 87: 1289-1301. DOI: https://doi.org/10.1890/0012-9658(2006)87[1289:aomtst]2.0.co;2.
  • Poorter L., Bongers F., Sterck F. J., Woll H. 2003. Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology 84: 602-608. DOI: https://doi.org/10.1890/0012-9658(2003)084[0602:aorfts]2.0.co;2.
  • Pregitzer K. S., DeForest J. L., Burton A. J., Allen M. F., Ruess R. W., Hendrick R. L. 2002. Fine root architecture of nine North American trees. Ecological Monographs 72: 293-309. DOI: https://doi.org/10.2307/3100029.
  • Pretzsch H., Biber P., Uhl E., Dahlhausen J., Rötzer T., Caldentey J., Koike T., van Con T., Chavanne A., Seifert T., du Toit B., Farnden C., Pauleit S. 2015. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban Forestry & Urban Greening 14: 466-479. DOI: https:// doi.org/10.1016/j.ufug.2015.04.006.
  • Pyörälä J., Liang X. L., Saarinen N., Kankare V., Wang Y. S., Holopainen M., Hyyppä J., Vastaranta M. 2018. Assessing branching structure for biomass and wood quality estimation using terrestrial laser scanning point clouds. Canadian Journal of Remote Sensing 44: 462-475. DOI: https://doi.org/10.1080/07038992.2018.1557040.
  • Raumonen P., Kaasalainen M., Akerblom M., Kaasalainen S., Kaartinen H., Vastaranta M., Holopainen M., Disney M., Lewis P. 2013. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sensing 5: 491-520. DOI: https://doi.org/10.3390/rs5020491.
  • de Reffye P., Houllier E., Blaise F., Barthélémy D., Dauzat J., Auclair D. 1995. A model simulating aboveground and belowground tree architecture with agroforestry applications. Agroforestry Systems 30: 175-197.
  • Room P. M., Maillette L., Hanan J. S. 1994. Module and metamer dynamics and virtual plants. Advances in Ecological Research 25 (25): 105-157. DOI: https://doi.org/10.1016/s0065-2504(08)60214-7.
  • Rust S., Roloff A. 2002. Reduced photosynthesis in old oak (Quercus robur): the impact of crown and hydraulic architecture. Tree Physiology 22: 597-601.
  • Sievänen R., Godin C., DeJong T. D., Nikinmaa E. 2014. Functional-structural plant models: a growing paradigm for plant studies. Annals of Botany 114: 599-603. DOI: https://doi.org/10.1093/aob/mcu175.
  • Stützel H., Kahlen K. 2016. Editorial: Virtual Plants: Modeling Plant Architecture in Changing Environments. Frontiers in Plant Science 7. DOI: https://doi.org/10.3389/fpls.2016.01734.
  • Sumida A., Terazawa I., Togashi A., Komiyama A. 2002. Spatial arrangement of branches in relation to slope and neighbourhood competition. Annals of Botany 89: 301-310. DOI: https://doi.org/10.1093/aob/mcf042.
  • Takahashi K. 1996. Plastic response of crown architecture to crowding in understorey trees of two co-dominating conifers. Annals of Botany 77: 159-164. DOI: https://doi.org/10.1006/anbo.1996.0018.
  • Tyree M. T. 1988. A dynamic model for water flow in a single tree: evidence that models must account for hydraulic architecture. Tree Physiology 4: 195-217.
  • Tyree M. T., Ewers F. W. 1991. The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345-360. DOI: https://doi.org/10.1111/j.1469-8137.1991.tb00035.x.
  • Zimmermann M. H. 1978. Hydraulic architecture of some diffuse-porous trees. Canadian Journal of Botany-Revue Canadienne De Botanique 56: 2286-2295.

Typ dokumentu

Bibliografia

Identyfikatory

DOI

Identyfikator YADDA

bwmeta1.element.agro-db1b7dd3-a981-4713-b2ee-dbb2f17efb2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.