PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |

Tytuł artykułu

Optimization of electrostatic separation process for maximizing biowaste recovery using Taguchi method and ANOVA

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, the electrostatic separation process was employed to recover biowaste from waste mixtures. The recovered biowaste is a potential source of alternative renewable energy (e.g. biomass energy). Taguchi’s methodology of experimental design was used for a robust design of both system and random factors. Robust design attempts to analyze the influence of respective factors towards the separation process and, meanwhile, limits the negative impact of the hard-to-control random factors. The effects of four factors, namely voltage level, rotation speed, water content, and particle size diameter were determined. It was noticeable that voltage level has a maximum effect (39.44%) on effective recovery of biowaste, followed by size diameter, water content, and rotation speed within design range. On the other hand, the minimal middling product was mostly influenced by the voltage level (79.78%). The water content has a negligible effect (0.78 %) if compared to rotation speed and size diameter. This paper concluded the appropriate operational range to have less error from the variations of noise.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

3

Opis fizyczny

p.1125-1131,fig.,ref.

Twórcy

autor
  • Faculty of Engineering and Green Technology, University Tunku Abdul Rahman, Perak, Malaysia
autor
  • LKC Faculty of Engineering and Science, University Tunku Abdul Rahman, KL, Malaysia
autor
  • Faculty of Engineering and Green Technology, University Tunku Abdul Rahman, Perak, Malaysia

Bibliografia

  • 1. MAGDALENA V., DANA A. Can vegetation indicate a municipal solid waste landfill’s impact on the environment? Pol. J. Envion. Stud. 23, (2), 501, 2014.
  • 2. JAFFRIN A., BENTOUNES N., JOAN A.M., MAKHLOUF S. Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth, Biosyst. Eng. 86, 113, 2003.
  • 3. MOHABUTH N., MILES N. The recovery of recyclable materials from waste electrical and electronic equipment (WEEE) by using vertical vibration separation. Resour. Conserv. Recy. 45, 60, 2005.
  • 4. HOLM-NIELSEN J.B., AL SEADI T., OLESKOWICZ-POPIEL P. The future of anaerobic digestion and biogas utilization. Bioresource Technol. 100, 5478, 2009.
  • 5. LAWVERAND J.E., DYRENFORTH W.P. Electrostatic separation in electrostatics and its Applications. A.D. Moore. Ed. New York: Wiley, 221-249, 1973.
  • 6. KIEWIET C., BERGOUGNOU M.A., BROWN J.D. Electrostatic separation of fine particle in vibrates fluidized beds. IEEE T. Ind. Appl., 6, 526, 1978.
  • 7. IUGA A., MORAR R., SAMUILA A., DASCALESCU L. Electrostatic separation of metals and plastics from granular industrial wastes. IEE Proc. Sci. Meas. Tech. 148, 47, 2001.
  • 8. IUGA A., CUGLESAN I., SAMUILA A., BLAJAN M., VADAN D., DASCALESCU L. Electrostatic separation of muscovite mica from feldspathic pegmatics. IEEE T. Ind. Appl. 40, (2), 422, 2004.
  • 9. RAVISHANKAR S.A., KOLLA H. Chemical enhanced electrostatic separation. The 7th International Heavy Mineral Conference 'What next', Heavy minerals, South Africa, 2009.
  • 10. ELDER J., YAN E. eForce...Newest generation of electrostatic separator for the mineral sands industry. Heavy minerals, South Africa, 2003.
  • 11. AMAN F., MORAR R., KOHNLECHNER R., SAMUILA A., DASCALESCU L. High-voltage electrode position: a key factor of electrostatic separation efficiency. IEEE T. Ind. Appl. 40, (3), 905, 2004.
  • 12. CALIN L., NEAMTU V., MORAR R., IUGA A., SAMUILA A., DASCALESCU L. Tribocharging of granular plastic mixtures in view of electrostatic separation. IEEE T. Ind. Appl. 44, (4), 1045, 2008.
  • 13. SAMUILA A., URS A., IUGA A., MORAR R., AMAN F., DASCALESCU L. Optimization of corona electrode position in roll-type electrostatic separators. IEEE T. Ind. Appl. 41, (2), 527, 2005.
  • 14. DASCALESCU L., SAMUILA A., MIHALCIOIU A., BENTE S., TILMATINE A. Robust design of electrostatic separation process. IEEE T. Ind. Appl. 41, (3), 715, 2005.
  • 15. TAGUCHI G. Introduction to quality engineering: designing quality into products and processes. Asian Productivity Organization, 1986.
  • 16. DASCALESCU L. Robust corona-electrostatic separation method for solid waste recycling. Int. J. Environ. Waste Manage. 2, 423, 2008.
  • 17. BASAVARAJAPPA S., CHANDRAMOHAN G., DAVIM J.P. Some studies on drilling of hybrid metal matrix composites based on Taguchi techniques. J. Mater. Process. Technol. 1, (3), 332, 2008.
  • 18. DAVIDSON M.J., BALASUBRAMANIAN K., TAGORE G.R.N. Experimental investigation on flow-forming of AA6061 alloys a Taguchi approach. J. Mater. Process. Technol. 1, (3), 283, 2008.
  • 19. HSU W.H., CHAO C.K., HSU H.C., LIN J., HSU C.C. Parametric study on the interface pullout strength of the vertebral body replacement cage using FEM-based Taguchi method. Med. Eng. Phys. 31, (3), 287, 2009.
  • 20. MAHAPATRA S.S., PATNAIK A., SATAPATHY A. Taguchi method applied to parametric appraisal of erosion behaviour of GF-reinforced polyester composites. Wear 1, (2), 214, 2008.
  • 21. CHIANG M.Y., HSIEH H.H. The use of the Taguchi method with grey relational analysis to optimize the thin-film sputtering process with multiple quality characteristic in color filter manufacturing. Comput. Ind. Eng. 2, 648, 2009.
  • 22. COMAKLI K, SIMSEK F., COMAKLI O., SAHIN B. Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method. Applied Energy 86, (11), 2451, 2009.
  • 23. KELES O. An optimization study on the cementation of silver with copper in nitrate solutions by Taguchi design. Hydrometallurgy 95, 333, 2009.
  • 24. LIN Y.C., CHEN Y.F., WANG D.A., LEE H.S. Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method. J. Mater. Process. Technol. 7, 3374, 2009.
  • 25. CHOU C.S., HO C.Y., HUANG C.I. The optimum conditions for combination of magnetic particles driven by a rotating magnetic field using the Taguchi method. Adv. Powder Technol. 20, (1), 55, 2009.
  • 26. SENTHILKUMAR K., SENTHIKUMAAR J.S., SRINIVASAN A. Reducing surface roughness by optimising the turning parameters. S. Afr. J. Ind. Eng. 24, (2), 78, 2013.
  • 27. HOU S., WU J., QIN Y., XU Z. Electrostatic separation for recycling waste printed circuit board: a study on external factor and a robust design for optimization. Environ. Sci. Technol. 44, 5177, 2010.
  • 28. WU J., LI J., XU Z. Electrostatic separation for multi-size granule of crushed printed circuit board waste using two-roll separator. J. Hazard. Mater. 159, 230, 2008.
  • 29. BESSERIS G.J. Multi-response non-parametric profiling using Taguchi’s qualimetric engineering and neurocomputing methods: Screening a foaming process in a solar collector assembly. Appl. Soft Comp. 22, 222, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-dac64e9a-13b3-4ce0-a56f-a6c077e97b18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.