PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 1 |

Tytuł artykułu

Prioritization of soil erosion vulnerable areas using multi - criteria analysis methods

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soil erosion caused by natural or anthropogenic factors represents a widespread problem with a range of negative environmental consequences. Various measures and works are being carried out to mitigate and prevent the direct and indirect effects of erosion. These actions often cannot be implemented in a whole region prone to erosion due to limited financial or human resources. Therefore, identifying the area that requires particular attention for conservation is necessary. The objective of this paper was to determine the most vulnerable areas (sub-watersheds) to soil erosion in the Topčiderska River Watershed, located in northern Serbia, using available data: land use, soil characteristics, and mean watershed slope. Using such multi-criteria decision analysis methods as analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS), the most vulnerable sub-watersheds were determined for three different scenarios. The results show a strong correlation between the ranking based on AHP method and TOPSIS method. It is observed that the most vulnerable sub-watersheds are characterized by the significant presence of arable land and very steep slope and thus have priority for conservation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

1

Opis fizyczny

p.317-323,fig.,ref.

Twórcy

autor
  • Faculty of Forestry, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia
autor
  • Faculty of Forestry, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia
  • Faculty of Forestry, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia
autor
  • Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
  • The Jaroslav Cerni Institute for the Development of Water Resources (JCI), Jaroslava Cernog 80, 11 226 Pinosava, Belgrade, Serbia

Bibliografia

  • 1. ZHOU P., LUUKKANEN O., TOKOLA T., NIEMINEN J. Effect of vegetation cover on soil erosion in a mountainous watershed. CATENA. 75, 319, 2008.
  • 2. RAHMAN M.R., SHI Z.H., CHONGFA C. Soil erosion hazard evaluation - An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecol. Model. 220, (13-14), 1724, 2009.
  • 3. TOY T.J., FOSTER G.R., RENARD K.G. Soil erosion: Processes. Prediction Measurement and Control. New York: Jon Wiley and Sons, pp. 1-23, 2002.
  • 4. DRAGICEVIC S., FILIPOVIC D., KOSTADINOV S., RISTIC R., NOVKOVIC I., ZIVKOVIC N., ANDJELKOVIC G., ABOLMASOV B., SECEROV V., DJURDJIC S. Natural Hazard Assessment for Land-use Planning in Serbia. Int. J. Environ. Res. 5, (2), 371, 2011.
  • 5. ZHANG X., WU B., LING F., ZENG Y., YAN N., YUAN C. Identification of priority areas for controlling soil erosion. CATENA. 83, (1), 76, 2010.
  • 6. ALVAREZ-GUERRA M., VIGURI J.R., VOULVOULIS N. A multicriteria-based methodology or site prioritization in sediment management. Environ. Int. 35, (6) 920, 2009.
  • 7. SHRIMALI S.S., AGGARWAL S.P., SAMRA J.S. Prioritizing erosion-prone areas in hills using remote sensing and GIS – a case study of the Sukhna Lake catchment, Northern India. Int. J. Appl. Earth Obs. Geoinf. 3, (1), 54, 2001.
  • 8. NIGEL R., RUGHOOPUTH S. Mapping of monthly soil erosion risk of mainland Mauritius and its aggregation with delineated basins. Geomorphology. 114, (3), 101, 2010.
  • 9. VRIELING A., STERK G., VIGIAK O. Spatial evaluation of soil erosion risk in the West Usambara Mountains, Tanzania. Land Degrad. Dev. 17, (3), 301, 2006.
  • 10. MERRITT W.S., LETCHER R.A. JAKEMAN A.J. A review of erosion and sediment transport models. Environ. Modell. Softw. 18, (8-9), 761, 2003.
  • 11. NI J.R., LI Y.K. Approach to soil erosion assessment in terms of land use structure changes. J. Soil Water Conserv. 58, (3), 158, 2003.
  • 12. NI J.R., LI X.X., BORTHWICK A.G.L. Soil erosion assessment based on minimum polygons in the Yellow river basin, China. Geomorphology. 93, (3-4), 233, 2008.
  • 13. WU Q., WANG M. A framework for risk assessment on soil erosion by water using an integrated and systematic approach. J. Hydrol. 337, (1-2), 11, 2007.
  • 14. ZHANG K.L., SHU A.P., XU X.L., YANG Q.K., YU B. Soil erodibility and its estimation for agricultural soil in China. J. Arid Environ. 72, (6), 1002, 2008.
  • 15. GAO S., ZHANG Z., CAO C. New Methods of Estimating Weights in AHP. In: Yu, F, Shu J., Yue G. (Ed.) Proceedings of the 2009 International Symposium on Information Processing (ISIP’09), 201, 2009.
  • 16. VALENTE R.O.A., VETTORAZZI C.A. Definition of priority areas for forest conservation through the ordered weighted averaging method. Forest Ecol. Manag. 256, (6), 1408, 2008.
  • 17. NEKHAY O., ARRIAZA M., GUZMÁN – ÁLVAREZ J.R. Spatial analysis of the suitability of olive plantations for wildlife habitat restoration. Comput. Electron. Agric. 65, (1), 49, 2009.
  • 18. STRAGER M.P., ROSENBERGER R.S. Incorporating stakeholder preferences for land conservation: Weights and measures in spatial MCA. Ecol. Econ. 58, (1), 79, 2006.
  • 19. FEIZIZADEH B., BLASCHKE T., NAZMFAR H., REZAEI MOGHADDAM M.H. Landslide Susceptibility Mapping for the Urmia Lake basin, Iran: A multi-criteria Evaluation Approach using GIS. Int. J. Environ. Res. 7, (2), 319, 2013.
  • 20. SRĐEVIĆ B. Combining different prioritization methods in the analytic hierarchy process synthesis. Comput. Oper. Res. 32, (7), 1897, 2005.
  • 21. BEHZADIAN M., KHANMOHAMMADI OTAGHSARA S., YAZDANI M., IGNATIUS J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 39, (17), 13051, 2012.
  • 22. CHEN Y., KILGOUR D.M., HIPEL K.W. En extreme-distance approach to multiple criteria ranking. Math. Comput. Model. 53, (5-6), 646, 2011.
  • 23. OPRICOVIC S., TZENG G-H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156, (2), 445, 2004.
  • 24. GUMUS A.T. Evaluation of hazardous waste transportation firms by using a two step fuzzy-AHP and TOPSIS methodology. Expert Syst. Appl. 36, (2) 4067, 2009.
  • 25. SAATY T. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 145, (1), 85, 2003.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-da52beeb-382b-4106-8f47-e643608adb56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.