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Abstract. Melanocytes/melanophores were known for some decades as pigment cells in skin. The 

origin of these cells in embryogenesis from neural crest cells is actively investigated now. Some 

melanocytes/melanophores were described inside adult vertebrates. Historically, these internal 

melanocytes have been largely ignored, until recently. In frogs, the melanophores populate not only 

the skin, but all the inner connective tissues: epineurium, peritoneum, mesentery, outer vascular 

layer and skin underside. In adult avian, melanocytes were also found in visceral connective tissues, 

periostea, muscles, ovaries and the peritoneum. In mammals and humans, melanocytes are also 

revealed in eyes, ears, heart and brain. A black-brownish pigment, which can be found in brains of 

humans and some mammals, was called neuromelanin. Currently, attempts are being made to treat 

neurodegenerative diseases and various nerve injuries with medications containing melanin. In this 

micro-review, we wanted to remind again about the inner melanophores on visceral organs and 

lining blood vessels and nerves, their importance in organisms resistance to adverse environmental 

factors. 

Introduction 

Melanocytes are the cells carrying melanin pigments. The melanins are insoluble polymers, 

the products of tyrosine amino acid polymerization and oxidative transformations. Inside the 

melanocytes, the melanin is packed in granules – melanosomes. These are specialized intracellular 

membrane-coated organelles that originate from the endoplasmic reticulum. In the process of 

differentiation the melanosomes are generated in melanoblasts – the melanocytes progenitors. The 

pigment melanin is produced in melanosomes in a complex process called melanogenesis [1]. The 

melanocytes of poikilotherms are commonly called melanophores. Melanophores differ from 

melanocytes in their ability to move and rearrange the pigment granules inside of them. It was 

investigated in both frog tadpole cutaneous and mesentery melanophores [2, 3]. Along with other 

pigment-containing cells (iridophores, xanthophores, guanophores) the melanophores are 

responsible for adaptive changes in amphibian coloration. Due to its oxido-reduction potential and 

stable free radical status, the melanin can protect the melanin-containing structures and neighboring 

tissues from red-ox stressing processes, harmful for the normal metabolism.  It provides photo- and 

radioprotection.  

In Embryogenesis 

In the vertebrate embryogenesis, melanocytes originate from the neural crest cells (NCCs) [4]. 

The pluripotent trunk NCCs generate bipotent neuron/glial and glial/melanogenic cells-progenitors 

[5].  The time and paths of their migration are dependent on the future fate choice. The migrating 

NCCs can follow a dorso-lateral path between the ectoderm and somites, or a ventro-medial path 

from the neural tube inside developing somites. The earlier NCCs mostly follow the ventro-medial 

path and differentiate into neurons and glia, contributing to future peripheral and autonomic neural 

systems, while the later waves of migration follow the dorso-lateral path and generate the pigment 

cells lineage including melanocytes. These melanocytes reach the epidermis, hair and other target 

tissues. The cooperative cells interactions, the cytoskeleton activity, negative and positive 

regulations directly influence the complicated pattern of the NCCs migration. Some times they 
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migrate one-by-one in chain and so the path can be traced. The paths of migration are determined 

by a set of permitting extracellular matrix components, like laminins, versicans and fibronectins 

which facilitate the proper NCCs migration. 

The melanoblasts in Silkie fowl were shown to lose their spatial path restriction, and in 

addition to the dorso-lateral path they migrate to bones, cartilage, muscles, and connective tissues 

[6]. These melanocytes then undergo a unique differentiation process and cause the internal tissues 

of Silkie fowl to become hyperpigmented. Recently it was shown in Zebrafish that the pigment cells 

progenitors derived from the neural crest, still retained the multipotency in adults. These 

postembryonic progenitors are associated with the peripheral neural system. They are flexible 

enough to give rise to different pigment (melanophores, iridophores and xanthophores) and neural 

cells (neurons and glia) [7]. 

An interesting concept of the melanocytes origin was proposed by Adameyko and 

collaborators [8-13].  According to this concept, during the avian and mammals embryogenesis, the 

melanocytes differentiate from the multipotent Schwann cells progenitors (SCPs) derived from the 

stem NCCs. The SCPs migration occurs along the growing axons of the peripheral neurons. At the 

moment the NCCs associate with the emerging neurons axons, they are considered as the SCPs. The 

expansion of the SCPs and number of melanoblasts happens mainly along and inside the nerves, 

terminated in specific dermal sites. Thus the growing nerves may be considered as niches for the 

stem cells and cells-progenitors, which give rise to numerous cells types, including glial Schwann 

cells, neuro-endocrine cells, parasympathetic and gut neurons, endoneural fibroblasts, melanocytes 

and others. 

In Adults 

The melanophores distribution patterns in adult amphibians are studied mainly in the skin, for 

they determine the animal coloration and ensure the defense from radio- and other harmful agents. 

In amphibian skin, the aggregation of melanosomes in perikaryal area of melanophores 

(contraction) results in brightening of animal marking (in the dark), while their diffusion over 

melanophores cytoplasm and dendrites (dispersion) leads to animal browning in the light. The 

adaptation of animals to the white ground is provided by the contraction, but in the adaptation to the 

dark ground there occurs the dispersion [2]. These processes are regulated by the melanocyte-

stimulating hormone and melatonin. In addition to cutenious, melanophores were revealed also in 

frog pericardium and blood vessels at the basis of the heart; heart; lungs; stomach; middle intestine; 

rectum; intestinal mesentery; kidney and renal blood vessels; testes; fatty bodies; urinary bladder; 

lumbar nerve plexus; and  lumbar parietal peritoneum [14-16]. 

Here we demonstrate (Figs. 1-3) the melanophores patterns inside the adult frogs Rana 

temporaria and Xenopus laevis. All the inner connecting tissues appeared to be spangled with these 

pigment cells.  
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Figure 1. A fragment of a dissected Rana temporaria with the lumbar vertebrae exposed. Ventral 

view. Roman numeral – vertebrae numbers (VI – IX); n – spinal nerves; p - peritoneum; g – a bulge 

of endolymphatic duct, harboring spinal radicule ganglions and lime crystals. Scale bar – 1 mm. 

The Fig. 1 shows a fragment of a dissected Rana temporaria without any treatment. The  

Fig. 2 combines the samples of several tissues from different specimens at larger magnifications. It 

is seen (Fig. 2 A, B, C, G) that the surface of the nerve trunks is dotted with chains of pigment cells 

– melanophores. The melanophores are associated particularly with the outer envelope (epineurium) 

that is clearly visible (Fig. 2B) when the envelope was removed mechanically with a needle. There 

in inner nerve fibers, in the perineurium and endoneurium, the pigment cells were not revealed. It is 

well known that the nerve outer envelope consists of dense connective tissue and carries blood and 

lymphatic vessels. The Fig. 2C shows a larger magnification of a fragment of isolated epineurium 

with melanophores chains in it. As shown in the Figs. 1 and 2D, the frog peritoneum is also thickly 

strewn with melanophores. A large magnification of the mesentery sample allowed to discern 

fibers, probably of collagen and elastin, bedding the melanophores (Fig. 2F). There over the blood 

vessels (red in Fig. 2D) and nerves (or it may be lymphatic vessels, white in Fig. 2D), associated 

with the peritoneum, melanophores are also revealed. Over the muscles (Fig. 2E), the melanophores 

form chains, marking the muscle-binding nerves. The branching nerve fibers and/or lymphatic 

vessels are also revealed at the skin underside, to much extent due to melanophores chains marking 

them (Fig. 2H and I). Melanophores are also observed over the connective-tissue envelope around 

the lumbar vertebrae (Fig. 1). Fig. 3 demonstrates the Xenopus laevis sciatic nerve fragments. Like 

that of Rana temporaria, the trunk nerve surface is covered with numerous melanophores of 

different shapes and with dendrites as well. The major magnification allowed to reveal the pigment 

cells over the connective-tissue fibers in the isolated epineurium preparation.  
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Figure 2. Melanophores within different tissues of Rana temporaria. A – a fragment of sciatic 

nerve with chains of melanophores on it. B - a fragment of sciatic nerve with no melanophores 

below the epineurium. C – a micrograph of melanophores in isolated epineurium. D – peritoneum 

with  blood vessel and nerves. E –  muscle with a binding nerve. F - a micrograph of melanophores 

in the mesentery. G – chains of melanophores with dendrites on the nerve envelope. H and I – 

fragments of the inner side of frog skin with melanophores, marking vessels or nerves. Scale bars: 

A and B – 700 μm; C, F and G – 100 μm; D – 1.5 mm; H and I – 1 mm. 
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Figure 3. Melanophores on the Xenopus laevis nerve. A and B – fragments of sciatic nerves. 

Melanophores and blood vessels are seen. C – a micrograph of melanophores in isolated 

epineurium. Scale bars: A – 150 μm, B – 300 μm and C – 30 μm. 

Hence, we can see that in frogs, the melanophores populate all the inner connective tissues: 

epineurium, peritoneum, mesentery, outer vascular layer and skin underside. As it is known, all 

these connective tissues contain the collagen and elastin fibers. They probably facilitate the 

melanophores migration or/and anchoring. The question is why the melanophores harboring inside 

the animal are so necessary. Probably, the frog skin is too much transparent and so innards and 
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nerves in particular, are to be protected from the harmful impacts of light. However, the presence of 

internal melanophores in non-transparent animals suggests that these cells have additional 

functions. The Brazilian authors described systemic effects of external ultraviolet radiation on 

internal melanin pigmentation, melanomacrophages and melanophores in frogs and thus provided a 

functional explanation to the presence of internal pigmentation [17].  Melanin can act as an 

antioxidant and protect against DNA damage and as immunomodulator. The climatic variables 

(temperature, UV and photoperiod) influence the coloration of internal organs of anurans [18]. 

Melanin pigmentation on the surface of organs of amphibians has an adaptive function conferred by 

the protective functions of the pigment. But most importantly, the internal melanin seems to 

respond differently to climatic variables depending on the species lineage and locality. DNA 

damage caused by UV were more pronounced in non-pigmented than in pigmented animals; the 

frequency of immune cells differed between pigmented and non-pigmented tadpoles. UV exposure 

increased mast cells and DNA damage in erythrocytes in both pigmented and non-pigmented 

tadpoles, while leukocytes decreased after UV exposure. Leukocyte responses were faster in non-

pigmented animals, supporting the hypothesis that melanin is involved in the initial innate immune 

response [19]. Probably, melanophores may also protect from active forms of oxygen and other free 

radicals – results of the normal metabolism.  

There are very few works on fish inner melanophores. Changes in internal color in many 

species of fish can be due to responsive peritoneal chromatophores and the degree of such a 

response correlates with levels of body transparency [20].  

In adult avian, melanocytes were also found in visceral connective tissues [6]. Under normal 

physiological conditions, Silkie fowls contain a large amount of melanin in their skin, periostea, 

muscles, ovaries, and other internal organs and tissues [21, 22]. Excess accumulation of melanin 

was observed in the visceral peritonea of the Huiyang Bearded chicken.  The study provided the 

histological and physical-chemical evidence to prove that black abdomen was due to a high amount 

of melanin accumulation in the peritoneum [23].  In mammals the bulk of melanocytes are settled in 

skin, they are also revealed in eyes, ears, heart [24]. We failed to find any melanocytes on the 

murine epineurium (data not shown). 

 In humans, there was the pigmentation in meninx and no pigmentation visible in the lining 

tissues of the pleural and peritoneal cavities [25]. A black-brownish pigment, which can be found in 

brains of humans and some mammals like primates, cows and horses, was called neuromelanin [26, 

27]. Furthermore, it was described that the pigment was normally accumulated in dopaminergic 

neurons during aging [28].  It is of special interest because in Parkinson’s disease, pallor of the 

substantia nigra pars compacta can be seen, due to the depletion of dopaminergic neurons 

containing neuromelanin [27, 29]. Currently, attempts are being made to treat neurodegenerative 

diseases and also various nerve injuries with medications containing melanin [30].  

The presence of such internal pigmentation is puzzling as it is hidden from sight. While there 

are enormous amount of studies and data on skin chromatophores, from the fine details of the 

motile machinery to animal behavior [31], the internal melanocytes have historically been largely 

ignored, until recently. Given that cutaneous chromatophores, retinal pigment cells, otic 

melanocytes as well as peritoneal melanocytes, can respond to external stimuli, these cells appear to 

share a relationship with environmental sensation. By providing communication and awareness of 

the surroundings, melanocytes in non-cutaneous tissues, such as in the peritoneum, may therefore 

be more connected to animal behavior than previously considered. 

The presence of internal melanocytes in non-transparent species suggests that there are 

additional function(s) of these cells. For example, they may function as waste deposits for 

accumulated melanin, participate in the innate immune system, function as antioxidants and ⁄or 

possibly help to shield gonadal tissue from DNA damage, as speculated [20, 31-33].  

Nevertheless, it appears that melanocytes are not simply melanin-producing cells and may 

have some other physiological significance. It has been proposed that melanocytes act as local 

“stress sensors” in the epidermis [34], and provide communicatory links with several different 

systems. For example, their close anatomic associations with nerve endings [35] and their ability to 
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produce neuropeptides and neurotransmitters suggest their role as neuroendocrine cells and thus, as 

a key component of a communication pathway between the skin and the central nervous system. 

Animals and Ethical Clearance 

Adult frogs were taken from the laboratory bands of the Shemyakin-Ovchinnikov Institute of 

Bioorganic Chemistry (Moscow, Russia). All animal experiments were performed in accordance 

with guidelines approved by the Animal Committee and handled in accordance with the 1986 

Animals (Scientific Procedures) Act and Helsinki Declaration. 

The dissected frogs and tissue samples were photographed directly or after MEMFA fixation. 

In total, there were taken 2 males and 1 female of Rana temporaria at different seasons and 3 

Xenopus laevis males.  
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