PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 2 |

Tytuł artykułu

The application potential of newly isolated bacteria strains to 1,3-PD production

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Because of an increasing interest in “green” processes for the production of chemicals, researchers are constantly looking for new strains. The natural environment offers a rich isolation source. Strains from natural probes have strong metabolic properties because they must adapt to variable conditions, and they are also able to produce a wide range of metabolites efficiently. This work is a very early report on some capacities of a few bacteria from Hafnia and Citrobacter genera, isolated from environmental probes to 1,3-PD and organic acids (fumaric, succinic, and acetic) production from glycerol. In this report, the predisposition to effective synthesis of 1,3-PD by investigated strains, based on feedback tests and resistance of bacteria to raw material, have been described.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

2

Opis fizyczny

p.581-591,fig.,ref.

Twórcy

  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland

Bibliografia

  • 1. LOPEZ M.J., NICHOLS N.N., DIEN B.S., MORENO J., BOTHAST R.J. Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl. Microbiol. Biotechnol. 64, 125, 2011.
  • 2. MOHSENI M. Isolation and Optimization of Ethanol Producing Bacteria from Natural Environments of Mazandaran Province in Iran. J. Gen. Res. 1 (1), 35, 2015.
  • 3. MELO A.D.B., FIGUEIREDO A.A., BITTENCOURT S.G.L.F., A.C.L. BATISTA, HORÁCIO R.M. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives. Canadian J. Vet. Res. 79 (4), 285, 2015.
  • 4. SNAUWAERT I., STRAGIER P., VUYST L.D., VANDAMME P. Comparative genome analysis of Pediococcus damnosus LMG 28219, a strain well-adapted to the beer environment. BMC Genomics 16, 267, 2015.
  • 5. LEJA K., MYSZKA K., KUBIAK P., WOJCIECHOWSKA J., OLEJNIK-SCHMIDT A.K., CZACZYK K., GRAJEK W. Isolation and identification of Clostridium spp. from natural samples that performs effective conversion of glycerol to 1,3-propanediol. Acta Sci. Pol., Biotechnologia 10 (2), 25, 2011.
  • 6. LEJA K., MYSZKA K., SCHMIDT-OLEJNIK A.K., JUZWA W., CZACZYK K. Selection and characterization of Clostridium bifermentans strains from natural environment capable of producing 1,3-propanediol under microaerophilic conditions. 8 (11), 1187, 2014.
  • 7. BRUNO H.A., DE ANDRADE B.A., KLEBER Z.A.C., DA SILVA-FILHO C., LACERDA V. Recent advances in using niobium compounds as catalysts in organic chemistry. Curr. Org. Synth. 12 (5), 570, 2015.
  • 8. TALARICO T.L., AXELSSON L.T., NOVOTNY J., FIUZAT M., DOBROGOSZ W.J. Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol : NAD+ oxidoreductase1990. Appl. Environ. Microbiol. 56 (4), 943-948, 1990.
  • 9. BOENIGK R., BOWIEN S., GOTTSCHALK G. Fermentation of glycerol to 13-propanediol in continuous cultures of Citrobacter freundii. Appl. Microbiol. Biotechnol. 38, 453, 1993.
  • 10. WOJTUSIK M., RODRÍGUEZ A., RIPOLL V., SANTOS V.E., GARCÍA J.L., GARCÍA-OCHOA F. 1,3-Propanediol production by Klebsiella oxytoca NRRL-B199 from glycerol. Medium composition and operational conditions. Biotechnol. Rep. 6, 100, 2015.
  • 11. COLIN T., BORIES A., MOULIN G. Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl. Microb. Biotechnol. 54 (2), 201, 2000.
  • 12. BIEBL H., MARTEN S., HIPPE H., DECKWER W.D. Glycerol conversion to 1,3- propanediol by newly isolated clostridia. Appl. Microbiol. Biotechnol. 36, 592, 1992.
  • 13. DABROCK B., BAHL H., GOTTSCHALK G. Parameters affecting solvent production by Clostridium pasteurianum. Appl. Environ. Microbiol. 58, 1233, 1992.
  • 14. YOUNGLESON J.S., JONES W.A., JONES D.T., WOODS D.R. Molecular analysis and nucleotide sequence of the adh1 gene encoding an NADPH-dependent butanol dehydrogenase gene in the gram-positive anaerobe Clostridium acetobutylicum. Gene 78, 355, 1998.
  • 15. HAO J., WEI W. ,JIESHENG T., JILUN L., DEHUA L. Decrease of 3-hydroxypriopionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gebe in Klebsiella pneumonia TUAC01I. Ind. Microbiol. Biotechnol., 35, 735, 2008.
  • 16. BIEBL H., MENZEL K., ZENG A.P., DECKWER W.D. Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52, 289, 1998.
  • 17. HOMANN T., TAG C., BIEBL H., DECKWER W.D., SCHINK B. Fermentation of glycerol to 13-propanediol by Klebsiella and Citrobacter strains. Appl. Microbiol. Biotechnol. 33, 121, 1990.
  • 18. DA SILVA G.P., MACK M., CONTIERO J. Glycerol: A promising and abundant carbon source for industrial microbiology. Biot. Adv. 27, 30, 2009.
  • 19. BARBIRATO F., HIMMI E. H., CONTE T., BORIES A. 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries. Ind. Crops Products. 7, 281, 1998.
  • 20. BOENIGK R., BOWIEN S., GOTTSCHALK G. Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl. Microbiol. Biotechnol. 38 (4), 453, 1993.
  • 21. DANIEL R., BOENIGK R., GOTTSCHALK G. Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning sequencing and overexpression of the corresponding gene in Escherichia coli. J. Bacteriol. 3, 2151, 1995.
  • 22. MALINOWSKI J. Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biot. Tech. 13, 127, 1999.
  • 23. SAXENA R.K., PINKI A., SAURABH S., JASMINE I. Microbial production of 13-propanediol: Recent developments and emerging opportunities. Biot. Adv. 27, 805-913, 2009.
  • 24. MIROŃCZUK A.M., RAKICKA M., BIEGALSKA A., RYMOWICZ W., DOBROWOLSKI A. A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Biores. Technol. 198, 445, 2015.
  • 25. MIROŃCZUK A.M., DOBROWOLSKI A., RAKICKA M., RYWIŃSKA A., RYMOWICZ W. Newly isolated mutant of Yarrowia lipolytica MK1 as a proper host for efficient erythritol biosynthesis from glycerol. Proc. Biochem. 50 (1), 61, 2015.
  • 26. DROŻDŻYŃSKA A., PAWLICKA J., KUBIAK P., KOŚMIDER A., PRANKE D., OLEJNIK-SCHMIDT A., CZACZYK K. Conversion of glycerol to 1,3-propanediol by Citrobacter freundii and Hafnia alvei - newly isolated strains from the Enterobacteriaceae. New Biotechnol. 31 (5), 402, 2014.
  • 27. TORSVIK V., DAAE F.L., SANDAA R.A., 0VREÁS L. Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotechnol. 64 (1), 53, 1998.
  • 28. CASES, DE LORENZO V., OUZOUNIS CH.A. Transcription regulation and environmental adaptation in bacteria. Trends in Microbiol. 11 (6), 248, 2003.
  • 29. GIAOURIS E., CHORIANOPOULOS N., NYCHAS G.J. Acquired acid adaptation of Listeria monocytogenes during its planktonic growth enhances subsequent survival of its sessile population to disinfection with natural organic compounds. 64, 896, 2014.
  • 30. MORADIGARAVAND D., ENGELSTÄDTER J. The impact of natural transformation on adaptation in spatially structured bacterial populations. BMC Evolution. Biol. 14, 141, 2014.
  • 31. KOPF M., KLÄHN S., SCHOLZ I., HESS W.R., VOß B. Variations in the non-coding transcriptome as a driver of interstrain divergence and physiological adaptation in bacteria. Scientific Reports. DOI: 10.1038/srep09560
  • 32. KRAEMER S.A., KASSEN R. Patterns of local adaptation in space and time among soil bacteria. The American Naturalist. 185 (3), 317, 2015.
  • 33. SAMUL D., LEJA K., CZACZYK K. Impurities of crude glycerol and their effect on metabolite production. Ann. Microbiol. 64, 891, 2014.
  • 34. CHATZIFRAGKOU A., DIETZ D., KOMAITIS M., ZENG A.P., PAPANIKOLAOU S. Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnol. Bioeng. 107, 76, 2010.
  • 35. RYWIŃSKA A., RYMOWICZ W., ŻLAROWSKA B. Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation. Food Technol. Biotechnol. 47, 1, 2009.
  • 36. JUN S.A., MOON C., KANG C.H., KONG S.W., SANG B.I., UM Y. Microbial fed-batch production of 1,3-propane-diol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl. Biochem. Biotechnol. 161, 491, 2010.
  • 37. JITRWUNG R., YARGEAU V. Optimization of media composition for the production of biohydrogen from waste glycerol. Int. J. Hydrogen Energy 36, 9602, 2011.
  • 38. ZHANG G.L., MA B.B., XU X.L., LI CH., WANG L. Fast conversion of glycerol to 1,3-propanediol by a new strain of Klebsiella pneumoniae. Biochem. Eng.J. 37 (3), 256, 2007.
  • 39. ABBAD-ANDALOUSI S., MANGINOT-DURR C., AMINE J., PETITDEMANGE E., PETITDEMANGE H. Isolation and characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-propanediol and altered production of acids. Appl. Environm. Microbiol. 61 (12), 4413, 1995.
  • 40. DAHM H. Metabolic activity of bacteria isolated from soil, rhizosphere and mycorrhizosphere of pine (Pinus silvestris L.). Acta Microbiol. Polonica 33 (2), 157, 1984.
  • 41. HAYES W. The genetics of bacteria and their viruses. Studies in basic genetics and molecular biology. In: The genetics of bacteria and their viruses. Studies in basic genetics and molecular biology. pp 734, pp.014, 1964.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d6bfa36c-0c0c-427d-9832-387a7d177cc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.