PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 84 | 1 |

Tytuł artykułu

Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana tabacum L.)

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of this study was to investigate the effect of Selenium (Se) supply (0, 3, 6, 12, 24 mg kg−1) on the growth, photosynthetic characteristics, Se accumulation and distribution of flue-cured tobacco (Nicotiana tabacum L.). Results showed that low-dose Se treatments (≤6 mg kg−1) stimulated plant growth but high-dose Se treatments (≥12 mg kg−1) hindered plant growth. Optimal Se dose (6 mg kg−1) stimulated plant growth by reducing MDA content and improving photosynthetic capability. However, excess Se (24 mg kg−1) increased MDA content by 28%, decreased net photosynthetic rate and carboxylation efficiency by 34% and 39%, respectively. The Se concentration in the roots, stems, and leaves of the tobacco plants significantly increased with increasing Se application. A linear correlation (R = 0.95, P < 0.01) was observed between Se level and tobacco plant tissue Se concentration. This correlation indicated that the tobacco plant tissues were not saturated within the concentration range tested. The pattern of total Se concentration in the tobacco plant tissues followed the order root > leaf > stem. The Se concentration in the roots was 3.17 and 7.57 times higher than that in the leaves and stems, respectively, after treatment with 24 mg kg−1 Se. In conclusion, the present study suggested that optimal Se dose (6 mg kg−1) improved the plant growth mainly by enhancing photosynthesis, stomatal conductance, carboxylation efficiency and Rubisco content in the flue-cured tobacco leaves. However, the inhibition of excess Se on tobacco growth might be due to high accumulation of Se in roots and the damage of photosynthesis in leaves.

Wydawca

-

Rocznik

Tom

84

Numer

1

Opis fizyczny

p.71-77,fig.,ref.

Twórcy

autor
  • Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Nongkenan Road 40, Hefei, Anhui, China
autor
  • Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Nongkenan Road 40, Hefei, Anhui, China
autor
  • Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Nongkenan Road 40, Hefei, Anhui, China
autor
  • Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Nongkenan Road 40, Hefei, Anhui, China
autor
  • Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Nongkenan Road 40, Hefei, Anhui, China

Bibliografia

  • 1. Terry N, Zayed AM, de Souza MP, Tarun AS. Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol. 2000;51(1):401–432.http://dx.doi.org/10.1146/annurev.arplant.51.1.401
  • 2. Feng R, Wei C, Tu S. The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot. 2013;87:58–68. http://dx.doi.org/10.1016/j.envexpbot.2012.09.002
  • 3. Hartikainen H, Xue T, Piironen V. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil. 2000;225(1–2):193–200. http://dx.doi.org/10.1023/A:1026512921026
  • 4. van Hoewyk D. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. AnnBot. 2013;112(6):965–972. http://dx.doi.org/10.1093/aob/mct163
  • 5. Lyons GH, Stangoulis JCR, Graham RD. Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant Soil.2005;270(1):179–188. http://dx.doi.org/10.1007/s11104-004-1390-1
  • 6. Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA. Selenium in higher plants: understanding mechanisms for biofortificationand phytoremediation. Trends Plant Sci. 2009;14(8):436–442. http:// dx.doi.org/10.1016/j.tplants.2009.06.006
  • 7. Martin AL, Trelease SF. Absorption of selenium by tobacco and soy beans in sand cultures. Am J Bot. 1938;5(7):380–385. http://dx.doi.org/10.2307/2436764
  • 8. Turakainen M, Hartikainen H, Seppänen MM. Effects of selenium treatments on potato (Solanum tuberosum L.) growth andconcentrations of soluble sugars and starch. J Agr Food Chem.2004;52(17):5378–5382. http://dx.doi.org/10.1021/jf040077x
  • 9. Hu Q, Xu J, Pang G. Effect of selenium on the yield and quality of green tea leaves harvested in early spring. J Agr Food Chem. 2003;51(11):3379–3381. http://dx.doi.org/10.1021/jf0341417
  • 10. Liu Q, Wang DJ, Jiang XJ, Cao ZH. Effects of the interactions between selenium and phosphorus on the growth and selenium accumulationin rice (Oryza sativa). Environ Geochem Health. 2004;26(2):325–330.http://dx.doi.org/10.1023/B:EGAH.0000039597.75201.57
  • 11. Djanaguiraman M, Prasad PVV, Seppänen M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Bioch. 2010;48(12):999–1007. http://dx.doi.org/10.1016/j.plaphy.2010.09.009
  • 12. Xu J, Zhu S, Yang F, Cheng L, Hu Y, Pan G, et al. The influence of selenium on the antioxidant activity of green tea. J Sci Food Agric.2003;83(5):451–455. http://dx.doi.org/10.1002/jsfa.1405
  • 13. Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton G, et al. Grain accumulation of selenium species in rice (Oryza sativaL.). Environ Sci Technol. 2012;46 (10):5557–5564. http://dx.doi.org/10.1021/es203871j
  • 14. Pyrzynska K. Selenium speciation in enriched vegetables. Food Chem. 2009;114:1183–1191. http://dx.doi.org/10.1016/j. foodchem.2008.11.026
  • 15. Finley JW. Reduction of cancer risk by consumption of seleniumenriched plants: enrichment of broccoli with selenium increases theanticarcinogenic properties of broccoli. J Med Food. 2003;6(1):19–26.http://dx.doi.org/10.1089/109662003765184714
  • 16. Lu XP, Gui YJ, Xiao BG, Li YP, Tong ZJ, Liu Y, et al. Development of DArT markers for a linkage map of flue-cured tobacco. Chin Sci Bull. 2013;58(6):641–648. http://dx.doi.org/10.1007/s11434-012-5453-z
  • 17. Jiang C, Zheng Q, Liu Z, Liu L, Zhao G, Long X, et al. Seawaterirrigation effects on growth, ion concentration, and photosynthesisof transgenic poplar overexpressing the Na+/H+ antiporter AtNHX1.J Plant Nutr Soil Sci. 2011;174(2):301–310. http://dx.doi.org/10.1002/jpln.201000033
  • 18. Jiang C, Zheng Q, Liu Z, Xu W, Liu L, Zhao G, et al. Overexpression of Arabidopsis thaliana Na+/H+ antiporter gene enhanced salt resistancein transgenic poplar (Populus × euramericana ‘Neva’). Trees.2012;26(3):685–694. http://dx.doi.org/10.1007/s00468-011-0635-x
  • 19. Li Y, Yang XX, Ren BB, Shen QR, Guo SW. Why nitrogen use efficiency decreases under high nitrogen supply in rice (Oryza sativa L.) seedlings. J Plant Growth Regul. 2012;31:47–52. http://dx.doi.org/10.1007/s00344-011-9218-8
  • 20. Gao J, Liu Y, Huang Y, Lin ZQ, Bañuelos GS, Lam MHW, et al. Daily selenium intake in a moderate selenium deficiency area ofSuzhou, China. Food Chem. 2011;126(3):1088–1093. http://dx.doi.org/10.1016/j.foodchem.2010.11.137
  • 21. Zhou XB, Shi WM, Zhang LH. Iron plaque outside roots affects selenite uptake by rice seedlings (Oryza sativa L.) grown in solution culture. Plant Soil. 2007;290(1–2):17–28. http://dx.doi.org/10.1007/s11104-006-9072-9
  • 22. Yao X, Chu J, Wang G. Effects of selenium on wheat seedlings under drought stress. Biol Trace Elem Res. 2009;130(3):283–290. http://dx.doi.org/10.1007/s12011-009-8328-7
  • 23. Wang YD, Wang X, Wong YS. Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. J Proteomics.2012;75(6):1849–1866. http://dx.doi.org/10.1016/j.jprot.2011.12.030
  • 24. Chen TF, Zheng WJ, Luo Y, Yang F, Bai Y, Tu F. Effects of selenium stress on photosynthetic pigment contents and growth of Chlorellavulgaris. J Plant Physiol Mol Biol. 2005;31(4):369–373. http://dx.doi.org/10.3321/j.issn:1671-3877.2005.04.006
  • 25. Azevedo Neto AD, Prico JT, Enéas-Filho J, Braga de Abreu CE, Gomes-Filho E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot. 2006;56(1):87–94. http://dx.doi. org/10.1016/j.envexpbot.2005.01.008
  • 26. Cartes P, Gianfreda L, Mora ML. Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and seleniteforms. Plant Soil. 2005;276 (1–2):359–367. http://dx.doi.org/10.1007/s11104-005-5691-9
  • 27. Cartes P, Gianfreda L, Paredes C, Mora ML. Selenium uptake and its antioxidant role in ryegrass cultivars as affected by selenite seed pelletization. J Soil Sci Plant Nut. 2011;11(4):1–14. http://dx.doi.org/10.4067/S0718-95162011000400001
  • 28. White PJ, Bowen HC, Marshall B, Broadley MR. Extraordinarily high leaf selenium to sulfur ratios define “Se-accumulator” plants. AnnBot. 2007;100(1):111–118. http://dx.doi.org/10.1093/aob/mcm084
  • 29. Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH. Seasonal fluctuations of selenium and sulfur accumulation in seleniumhyperaccumulators and related nonaccumulators. New Phytol.2007;173:517–525. http://dx.doi.org/10.1111/j.1469-8137.2006.01943.x
  • 30. Valdez Barillas JR, Quinn CF, Freeman JL, Lindblom SD, Fakra SC, Marcus MA, et al. Selenium distribution and speciation in the hyperaccumulator Astragalus bisulcatus and associated ecological partners. Plant Physiol. 2012;159(4):1834–1844. http://dx.doi.org/10.1104/ pp.112.199307
  • 31. Hasanuzzaman M, Hossain MA, Fujita M. Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance.J Plant Sci. 2010;5:354–375. http://dx.doi.org/10.3923/jps.2010.354.375
  • 32. El Mehdawi AF, Pilon-Smits EAH. Ecological aspects of plant selenium hyperaccumulation. Plant Biol. 2012;14:1–10. http://dx.doi.org/10.1111/j.1438-8677.2011.00535.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d6932172-18c4-4c18-9857-ebefac8d7df1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.