PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 16 | 3 |

Tytuł artykułu

Applicability of 2D gel electrophoresis and liquid chromatography in proteomic analysis of urine using mass spectrometry MALDI-TOF

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Proteomics including the studies of the structure, function and dependences between proteins is more and more extensively applied in human medicine and veterinary medicine. The analysis of protein profiles of tissues and body fluid from healthy and ill individuals allows to identify diagnostic, prognostic and predictive markers in various pathological states in people and animals. This paper presents preparation of urine samples for analysis in the mass spectrometer MALDI-TOF (Ultraflextreme, Bruker, Bremen, Germany) by means of two methods: liquid chromatography based on the system Nano-LC (PROTEINER FC II, Bruker Daltonics, Bremen Germany). and two-direction electrophoresis 2DE (GE Healthcare, United Kingdom). Both methods enable separation of the mixture under consideration into individual fractions of high purity indispensable for obtaining readable mass spectra. The purpose of this paper is to determine applicability of these methods in analysis of protein composition of urine samples.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

3

Opis fizyczny

p.587-592,ref.

Twórcy

autor
  • Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Glęboka 30, 20-612 Lublin, Poland
autor
  • Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Glęboka 30, 20-612 Lublin, Poland
autor
  • Department and Clinic of Animal Internal Diseases, University of Life Sciences, Gleboka 30, 20-612 Lublin, Poland
  • Department of Vitreoretinal Surgery, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
  • Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Glęboka 30, 20-612 Lublin, Poland

Bibliografia

  • Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7: R80.
  • Addis MF, Pisanu S, Ghisaura S, Pagnozzi D, Marogna G, Tanca A, Biosa G, Cacciotto C, Alberti A, Pittau M, Roggio T, Uzzau S (2011) Proteomics and pathway analyses of the milk fat globule in sheep naturally infected by Mycoplasma agalactiae provide indications of the in vivo response of the mammary epithelium to bacterial infection. Infect Immun 79: 3833-3845.
  • Anderson NG, Anderson NL, Tollaksen SL, Hahn H, Giere F, Edwards J (1979) Analytical techniques for cell fractions: XXV. Concentration and two-dimensional electrophoretic analysis of human urinary proteins. Anal Biochem 95: 48-61.
  • Balog CI, Hensbergen PJ, Derks R, Verweij JJ, Van Dam GJ, Vennervald BJ, Deelder AM, Mayboroda OA (2009) Novel automated biomarker discovery work flow for urinary peptidomics. Clin Chem 55: 117-125.
  • Barreiro JR, Braga PA, Ferreira CR, Kostrzewa M, Maier T, Wegemann B, Böettcher V, Eberlin MN, dos Santos MV (2012) Nonculture-based identification of bacteria in milk by protein fingerprinting. Proteomics 12: 2739-2745.
  • Benkali K, Marquet P, Rérolle J, Le Meur Y, Gastinel L (2008) A new strategy for faster urinary biomarkers identification by Nano-LC-MALDI-TOF/TOF mass spectrometry. BMC Genomics 9: 541.
  • Bryan RT, Wei W, Shimwell NJ, Collins SI, Hussain SA, Billingham LJ, Murray PG, Deshmukh N, James ND, Wallace DM, Johnson PJ, Zeegers MP, Cheng KK, Martin A, Ward DG. (2011) Assessment of high-throughput high-resolution MALDI-TOF-MS of urinary peptides for the detection of muscle-invasive bladder cancer. Proteomics Clin Appl 5: 493-503.
  • Bubenik LJ, Hosgood GL, Waldron DR, Snow LA (2007) Frequency of urinary tract infection in catheterized dogs and comparison of bacterial culture and susceptibility testing results for catheterized and noncatheterized dogs with urinary tract infections. J Am Vet Med Assoc 231: 893-899.
  • Chiaradia E, Valiani A, Tartaglia M, Scoppetta F, Renzone G, Arena S, Avellini L, Benda S, Gaiti A, Scaloni A (2013) Ovine subclinical mastitis: Proteomic analysis of whey and milk fat globules unveils putative diagnostic biomarkers in milk. J Proteomics 83: 144-159.
  • Cobzac SC, Gocan S (2011) Sample preparation for high performance liquid chromatography: Recent progress. J Liq Chromatogr Relat Technol 34: 1157-1267
  • Court M, Selevsek N, Matondo M, Allory Y, Garin J, Masselon CD, Domon B (2011) Toward a standardized urine proteome analysis methodology. Proteomics 11: 1160-1171.
  • D’Amico G, Bazzi C (2003) Pathophysiology of proteinuria. Kidney Int 63: 809-825.
  • De Jong WH, Wilkens MH, De Vries EG, Kema IP (2010) Automated mass spectrometric analysis of urinary and plasma serotonin. Anal Bioanal Chem 396: 2609-2616.
  • Erni F (1982) Liquid chromatography-mass spectrometry in the pharmaceutical industry: Objectives and needs. J Chromatogr 251: 141-151.
  • Holt GE, Schwartz HS, Caldwell RL (2006) Proteomic profiling in musculoskeletal oncology by MALDI mass spectrometry. Clin Orthop Relat Res 450: 105-110.
  • Jansen RS, Rosing H, Schellens JH, Beijnen JH (2011) Mass spectrometry in the quantitative analysis of therapeutic intracellular nucleotide analogs. Mass Spectrom Rev 30: 321-343.
  • Jeong SH, Hyo JP, Jae HJ, Sung CK, Hyung CP, Choong WK, Kee RK, Ky HC (2005) Identification of proteins differentially expressed in the conventional renal cell carcinoma by proteomic analysis. J Korean Med Sci 20: 450-455.
  • Khan A, Grinyer J, Truong ST, Breen EJ, Packer NH (2005) New urinary EPO drug testing method using two-dimensional gel electrophoresis. Clin Chim Acta 358: 119-130.
  • Khan A, Packer NH (2006) Simple urinary sample preparation for proteomic analysis. J Proteome Res 5: 2824-2838.
  • Kim Y, Atalla H, Mallard B, Robert C, Karrow N (2011) Changes in Holstein cow milk and serum proteins during intramammary infection with three different strains of Staphylococcus aureus. BMC Vet Res 7: 51
  • Konvalinka A, Scholey JW, Diamandis EP (2012) Searching for new biomarkers of renal diseases through proteomics. Clin Chem 58: 353-365.
  • Lapolla A, Fedele D, Seraglia R, Traldi P (2006) The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: an update. Mass Spectrom Rev 25: 775-797.
  • Liu W, Liu B, Cai Q, Li J, Chen X, Zhu Z (2012) Proteomic identification of serum biomarkers for gastric cancer using multi-dimensional liquid chromatography and 2D differential gel electrophoresis. Clin Chim Acta 413: 1098-1106.
  • Machtejevas E, Marko-Varga G, Lindberg C, Lubda D, Hendriks R, Unger KK (2009) Profiling of endogenous peptides by multidimensional liquid chromatography: On-line automated sample cleanup for biomarker discovery in human urine. J Sep Sci 32: 2223-2232.
  • Marimuthu A, O’Meally RN, Chaerkady R, Subbannayya Y, Nanjappa V, Kumar P, Kelkar DS, Pinto SM, Sharma R, Renuse S, Goel R, Christopher R, Delanghe B, Cole RN, Harsha HC, Pandey A (2011) A Comprehensive Map of the Human Urinary Proteome. J Proteome Res 10: 2734-2743.
  • Mischak H, Julian BA, Novak J (2007) High-resolution proteome/ peptidome analysis of peptides and low-molecular- weight proteins in urine. Proteomics Clin Appl 1: 792.
  • Nabity MB, Lees GE, Dangott LJ, Cianciolo R, Suchodolski JS, Steiner JM (2011) Proteomic analysis of urine from male dogs during early stages of tubulointerstitial injury in a canine model of progressive glomerular disease. Vet Clin Pathol 40: 222-236.
  • Nabity MB, Lees GE, Cianciolo R, Boggess MM, Steiner JM, Suchodolski JS (2012) Urinary biomarkers of renal disease in dogs with X-linked hereditary nephropathy. J Vet Intern Med 26: 282-293.
  • Norden AG, Sharratt P, Cutillas PR, Cramer R, Gardner SC, Unwin RJ (2004) Quantitative amino acid and proteomic analysis: very low excretion of polypeptides >750 Da in normal urine. Kidney Int 66: 1994-2003.
  • Pang JX, Ginanni N, Dongre AR, Hefta SA, Opitek GJ (2002) Biomarker discovery in urine by Proteomics. J Proteomic Res 1: 161-169.
  • Pieper R, Gatlin CL, McGrath AM, Makusky AJ, Mondal M, Seonarain M, Field E, Schatz CR, Estock MA, Ahmed N, Anderson NG, Steiner S (2004) Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 4: 1159-1174.
  • Saito K, Yagi K, Ishizaki A, Kataoka H (2010) Determination of anabolic steroids in human urine by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J Pharm Biomed Anal 52: 727-733.
  • Salo PK, Vilmunen S, Salomies H, Ketola RA, Kostiainen R (2007) Two-dimensional ultra-thin-layer chromatography and atmospheric pressure matrix-assisted laser desorption/ ionization mass spectrometry in bioanalysis. Anal Chem 79: 2101-2108.
  • Shigaki S, Sonoda T, Nagashima T, Okitsu O, Kita Y, Niidome T, Katayama Y (2006) A new method for evaluation of intracellular protein signals using mass spectrometry. Sci Tech Adv Mater 7: 699-704.
  • Sobhani K (2010) Urine proteomic analysis: use of two-dimensional gel electrophoresis, isotope coded affinity tags, and capillary electrophoresis. Methods Mol Biol 641: 325-346.
  • Sun W, Gao S, Wang L, Chen Y, Wu S, Wang X, Zheng D, Gao Y (2006) Microwave-assisted protein preparation and enzymatic digestion in proteomics. Mol Cell Proteomics 5: 769-776.
  • Suzuki Y, Miyazaki M, Ito E, Suzuki M, Yamashita T, Taira H, Suzuki A (2007) Structural characterization of N-glycans of cauxin by MALDI-TOF mass spectrometry and nano LC-ESI-mass spectrometry. Biosci Biotechnol Biochem 71: 811-816.
  • Theodorescu D, Mischak H (2007) Mass spectrometry based proteomics in urine biomarker discovery. World J Urol 25: 435-443.
  • Thongboonkerd V, Saetun P (2007) Bacterial overgrowth affects urinary proteome analysis: recommendation for centrifugation, temperature, duration, and the use of preservatives during sample collection. J Proteome Res 6: 4173-4181.
  • Thongboonkerd V (2007) Practical points in urinary proteomics. J Proteome Res 6: 3881-3890.
  • Vaezzadeh AR, Briscoe AC, Steen H, Lee RS (2010) One-step sample concentration, purification, and albumin depletion method for urinary proteomics. J Proteome Res 9: 6082-6089.
  • Vlahou A, Schellhammer PF, Mendrinos S, Patel K, Kondylis FI, Gong L, Nasim S, Wrigh Jr GL Jr (2001) Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol 158: 1491-1502.
  • Weeks ME (2010) Urinary proteome profiling using 2D-DIGE and LC-MS/MS. Methods Mol Biol 658: 293-309.
  • Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J, Mason MD, Clayton A (2010) Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics 9: 1324-1338.
  • Wu S, Xu K, Chen G, Zhang J, Liu Z, Xie X (2012) Identification of serum biomarkers for ovarian cancer using MALDI-TOF-MS combined with magnetic beads. Int J Clin Oncol 17: 89-95.
  • Yang Y, Zhao S, Fan Y, Zhao F, Liu Q, Hu W, Liu D, Fan K, Wang J, Wang J (2009) Detection and identification of potential biomarkers of non-small cell lung cancer. Technol Cancer Res Treat 8: 455-466.
  • Zerefos PG, Vlahou A (2008) Urine sample preparation and protein profiling by two-dimensional electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectroscopy. Methods Mol Biol 428: 141-157.
  • Zhou H, Pisitkun T, Aponte A, Yuen PS, Hoffert JD, Yasuda H, Hu X, Chawla L, Shen RF, Knepper MA, Star RA (2006) Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 70: 1847-1857.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d3efc542-4221-4a0f-b706-b637044a684c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.