PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 74 | 4 |

Tytuł artykułu

Antibacterial activity of essential oils of Salvia officinalis growing in Morocco

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. The bacterial infections treatment is complicated by antibiotic resistance. In this fact, the need for new therapeutic approaches to control bacterial infections is crucial. Therefore, discovering new antibiotics from medicinal plants, able to kill drug-resistant bacteria, is essential to saving modern medicine. Objective. This study was to evaluate the in vitro antibacterial activity of Salvia officinalis essential oil (SoEO) growing in Morocco. Material and methods. The essential oil was extracted by hydro distillation, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by agar dilution method. The essential oil was analyzed by Fourier-transform infrared spectroscopy (FTIR) and fractionated/purified using column chromatography followed by thin-layer chromatography (TLC). Results. The results revealed that SoEO showed higher antimicrobial activity against Enterococcus faecalis and Citrobacter freundii. Fourier-transform infrared spectroscopy (FTIR) analysis, and purification/fractionation of SoEO, indicates that the most polar fraction F6 is the active fraction of SoEO. This finding can be explained by the existence of polar compounds in this fraction including alcohols, and phenols as thymol, eugenol, globulol, and spathulenol. Conclusions. It can be conclude that alcohols and phenols from Salvia officinalis essential oil (SoEO) have promising antibacterial activity. This action can offer a great possibility of the application of SoEO in the treatment of bacterial diseases.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

74

Numer

4

Opis fizyczny

p.459-468,fig.,ref.

Twórcy

autor
  • Control Quality in Bio-control Industry & Bioactive Molecules Laboratory, Department of Biology, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
autor
  • Laboratory of Biotechnology, Biochemistry and Nutrition. Training and Research, Unit on Nutrition and Food Sciences, Department of Biology, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
  • Laboratory of Biotechnology, Biochemistry and Nutrition. Training and Research, Unit on Nutrition and Food Sciences, Department of Biology, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
  • Control Quality in Bio-control Industry & Bioactive Molecules Laboratory, Department of Biology, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
  • Laboratory of Biotechnology, Biochemistry and Nutrition. Training and Research, Unit on Nutrition and Food Sciences, Department of Biology, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
  • Materials and Environment Laboratory, Department of Biology, Biotechnology, Faculty Polydisciplinary of Taroudant B.P 271, Ibn Zohr University, Agadir, Morocco
autor
  • Control Quality in Bio-control Industry & Bioactive Molecules Laboratory, Department of Biology, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco

Bibliografia

  • 1. Chatterjee A, Willett JL, Dunny GM, Duerkop BA. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS genetics 2021;17(1):1-26. https://doi.org/10.1371/journal.pgen.1009204.
  • 2. Anderson MT, Mitchell LA, Zhao L, Mobley HL. Citrobacter freundii fitness during bloodstream infection. Scientific reports 2018;8(1):1-14. https://doi. org/10.1038/s41598-018-30196-0.
  • 3. Daga AP, Koga VL, Soncini JGM, de Matos CM, Perugini MRE, Pelisson M, Kobayashi RKT, Vespero EC. Escherichia coli bloodstream infections in patients at a university hospital: virulence factors and clinical characteristics. Frontiers in cellular and infection microbiology 2019;9(191):1-10. https://doi.org/10.3389/fcimb.2019.00191.
  • 4. Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;10(107):1-11. https://doi.org/10.3389/fcimb.2020.00107.
  • 5. Garcia-Clemente M, de la Rosa D, Máiz L, Girón R, Blanco M, Olveira C, Canton R, Martinez-García MA. Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. J. Clin Medicine 2020;9(3800):2-32. https://doi.org/10.3390/jcm9123800.
  • 6. Alghamdi F, Shakir M. The influence of Enterococcus faecalis as a dental root canal pathogen on endodontic treatment: A systematic review. Cureus 2020;12 (3):e7257. DOI: 10.7759/cureus.7257.
  • 7. Liu L-H, Wang N-Y, Wu AY-J, Lin C-C, Lee C-M, Liu C-P. Citrobacter freundii bacteremia: risk factors of mortality and prevalence of resistance genes. J Microbiol Immunol Infect 2018;51(4):565-572. https://doi.org/10.1016/j.jmii.2016.08.016.
  • 8. WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed. In: WHO ed. Geneva, 2017.
  • 9. Yahdi M, Abdelmageed S, Lowden J, Tannenbaum L. Vancomycin-resistant enterococci colonization–infection model: parameter impacts and outbreak risks. J Biol Dynamics 2012;6(2):645-662. https://doi.org/10.1080/17513758.2012.670733.
  • 10. Miller WR, Tran TT, Diaz L, Rios R, Khan A, Reyes J, Prater AG, Panesso D, Shamoo Y, Arias CA. LiaRindependent pathways to daptomycin resistance in Enterococcus faecalis reveal a multilayer defense against cell envelope antibiotics. Molecular Microbiology 2019;111(3):811-824. https://doi.org/10.1111/mmi.14193
  • 11. He F, Wang W, Wu M, Fang Y, Wang S, Yang Y, Ye C, Xiang F. Antioxidant and antibacterial activities of essential oil from Atractylodes lancea rhizomes. Industrial Crops and Products 2020;153:112552. https://doi.org/10.1016/j.indcrop.2020.112552.
  • 12. Al-Mijalli SH, Assaggaf H, Qasem A, El-Shemi AG, Abdallah EM, Mrabti HN, Bouyahya A. Antioxidant, Antidiabetic, and Antibacterial Potentials and Chemical Composition of Salvia officinalis and Mentha suaveolens Grown Wild in Morocco. Adv Pharmacol Pharmace Sci 2022;2022(ID2844880):1-10. https://doi.org/10.1155/2022/2844880.
  • 13. Privitera G, Luca T, Castorina S, Passanisi R, Ruberto G, Napoli E. Anticancer activity of Salvia officinalis essential oil and its principal constituents against hormone-dependent tumour cells. Asian Pacific Journal of Tropical Biomedicine 2019;9(1):24-28. 10.4103/2221-1691.250266.
  • 14. Ntondini S, Lenetha G, Dzogbewu T. Antimicrobial activity of Salvia officinalis against Streptococcus mutans causing dental implant failure: An in vitro study. J Int Oral Health 2021;13(5):499-507. DOI:10.4103/jioh.jioh_26_21.
  • 15. Abou Baker DH, Amarowicz R, Kandeil A, Ali MA, Ibrahim EA. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. J Agric Food Research 2021;4:1-7. https://doi.org/10.1016/j.jafr.2021.100135.
  • 16. Harizia A, Benguerai A, Elouissi A, Mahi T, Bonal R. Chemical composition and biological activity of Salvia officinalis L. essential oil against Aphis fabae Scopoli (Hemiptera: Aphididae). J Plant Diseases Protection 2021;128(6):1547-1556. https://doi.org/10.1007/s41348-021-00525-z.
  • 17. Bagamboula C, Uyttendaele M, Debevere J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol 2004;21(1):33-42. https://doi.org/10.1016/S0740-0020(03)00046-7.
  • 18. Sarker SD, Nahar L, Kumarasamy Y. Microtitre platebased antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007;42(4):321-324. https://doi.org/10.1016/j.ymeth.2007.01.006.
  • 19. Jaber H, Oubihi A, Ouryemchi I, Boulamtat R, Oubayoucef A, Bourkhiss B, Ouhssine M. Chemical Composition and Antibacterial Activities of Eight Plant Essential Oils from Morocco against Escherichia coli Strains Isolated from Different Turkey Organs. Biochemistry Research International 2021;2021 (ID 6685800):9. 10.1155/2021/6685800.
  • 20. Rioba NB, Itulya FM, Saidi M, Dudai N, Bernstein N. Effects of nitrogen, phosphorus and irrigation frequency on essential oil content and composition of sage (Salvia officinalis L.). Journal of Applied Research on Medicinal and Aromatic Plants 2015;2(1):21-29. https://doi.org/10.1016/j.jarmap.2015.01.003.
  • 21. Hodaj-Çeliku E, Tsiftsoglou O, Shuka L, Abazi S, Hadipavlou-Litina D, Lazari D. Antioxidant activity and volatiles constituents of wild and cultivated Salvia officinalis essential oils from Albania. Journal of Hygienic Engineering and Design 2017;18:54-58.
  • 22. Ben Farhat M, Jordán MJ, Chaouch-Hamada R, Landoulsi A, Sotomayor JA. Phenophase effects on sage (Salvia officinalis L.) yield and composition of essential oil. Journal of Applied Research on Medicinal and Aromatic Plants 2016;3(3):87-93. https://doi.org/10.1016/j.jarmap.2016.02.001.
  • 23. Fellah S, Romdhane M, Abderraba M. Extraction et étude des huiles essentielles de la Salvia officinalis. l cueillie dans deux régions différentes de la Tunisie. Journal-Societe Algerienne De Chimie 2006;16 (2):193.
  • 24. Ovidi E, Laghezza Masci V, Zambelli M, Tiezzi A, Vitalini S, Garzoli S. Laurus nobilis, Salvia sclarea and Salvia officinalis Essential Oils and Hydrolates: Evaluation of Liquid and Vapor Phase Chemical Composition and Biological Activities. Plants 2021;10(4):707.
  • 25. Węglarz Z, Kosakowska O, Pióro-Jabrucka E, Przybył JL, Gniewosz M, Kraśniewska K, Szyndel MS, Costa R, Bączek KB. Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe. Pharmaceuticals 2022;15(6):735. https://doi.org/10.3390/ph15060735.
  • 26. Musicha P, Cornick JE, Bar-Zeev N, French N, Masesa C, Denis B, Kennedy N, Mallewa J, Gordon MA, Msefula CL. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998–2016): a surveillance study. The Lancet Infectious Diseases 2017;17(10):1042-1052.https://doi.org/10.1016/S1473-3099(17)30394-8.
  • 27. Helal IM, El-Bessoumy A, Al-Bataineh E, Joseph MR, Rajagopalan P, Chandramoorthy HC, Ben Hadj Ahmed S. Antimicrobial efficiency of essential oils from traditional medicinal plants of Asir region, Saudi Arabia, over drug resistant isolates. BioMed Res Int 2019;2019:9 pages. https://doi.org/10.1155/2019/8928306.
  • 28. Zerkani H, Tagnaout I, Dirioiche A, Adadi I, El Karkouri J, Padzys GS, Zair T. Chemical characterization and antibacterial activity of the essential oils of Tetraclinis articulata (Vahl) from Morocco. Mediter J Chem 2019;8(5):390-396. https://doi.org/10.13171/mjc851907076hz.
  • 29. Bartkiene E, Lele V, Starkute V, Zavistanaviciute P, Zokaityte E, Varinauskaite I, Pileckaite G, Paskeviciute L, Rutkauskaite G, Kanaporis T, Dmitrijeva L, Viskelis P, Santini A, Ruzauskas M. Plants and Lactic Acid Bacteria Combination for New Antimicrobial and Antioxidant Properties Product Development in a Sustainable Manner. Foods 2020;9 (4):433. https://doi.org/10.3390/foods9040433.
  • 30. Schürmann M, Oppel F, Gottschalk M, Büker B, Jantos CA, Knabbe C, Hütten A, Kaltschmidt B, Kaltschmidt C, Sudhoff H. The therapeutic effect of 1, 8-cineol on pathogenic bacteria species present in chronic rhinosinusitis. Frontiers in Microbiol 2019;10:2325. https://doi.org/10.3389/fmicb.2019.02325.
  • 31. Chebbac K, Ghneim HK, El Moussaoui A, Bourhia M, El Barnossi A, Benziane Ouaritini Z, Salamatullah AM, Alzahrani A, Aboul-Soud MAM, Giesy JP, Guemmouh R. Antioxidant and Antimicrobial Activities of Chemically-Characterized Essential Oil from Artemisia aragonensis Lam. against Drug-Resistant Microbes. Molecules 2022;27(3):1136. https://doi.org/10.3390/molecules27031136.
  • 32. Bouaouina S, Aouf A, Touati A, Ali H, Elkhadragy M, Yehia H, Farouk A. Effect of Nanoencapsulation on the Antimicrobial and Antibiofilm Activities of Algerian Origanum glandulosum Desf. against Multidrug-Resistant Clinical Isolates. Nanomaterials 2022;12(15):2630. https://doi.org/10.3390/nano12152630.
  • 33. Khalil R, Li Z-G. Antimicrobial activity of essential oil of Salvia officinalis L. collected in Syria. African J Biotechnol 2011;10 (42):8397-8402. DOI: 10.5897/AJB10.2615.
  • 34. Khedher MRB, Khedher SB, Chaieb I, Tounsi S, Hammami M. Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI journal 2017;16 (2017):160–173.10.17179/excli2016-832.
  • 35. Palariya D, Singh A, Dhami A, Pant AK, Kumar R, Prakash O. Phytochemical analysis and screening of antioxidant, antibacterial and anti-inflammatory activity of essential oil of Premna mucronata Roxb. leaves. Trends in Phytochemical Research 2019;3(4):275-286.20.1001.1.25883623.2019.3.4.5.6.
  • 36. Hummadi E, Cetin Y, Demirbek M, Kardar N, Khan S, Coates C, Eastwood D, Dudley E, Maffeis T, Loveridge J. Antimicrobial Volatiles of the Insect Pathogen Metarhizium brunneum. J Fungi 2022;8:326. https://doi. org/10.3390/jof8040326.
  • 37. Elhidar N, Soulaimani B, Goehler A, Bohnert JA, Abbad A, Hassani L, Mezrioui N-E. Chemical composition, antibacterial activity and effect of Rhus albida Schousb essential oil on the inhibition of NorA efflux pump in Staphylococcus aureus. South African J Botany 2021;142:19-24. https://doi.org/10.1016/j.sajb.2021.05.025.
  • 38. Kizil S, Haşimi N, Tolan V, Kilinc E, Karataş H. Chemical composition, antimicrobial and antioxidant activities of hyssop (Hyssopus officinalis L.) essential oil. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2010;38(3):99-103. https://doi.org/10.15835/nbha3834788.
  • 39. Abdellah F, Boukraa L, Hammoudi Sm, Kolayli S, Sahin H, Zehra C, Bearnaba R. Chemical composition and antibacterial activity of essential oils of some Algerian and Turkish medicinal plants. J Apitherapy Nature 2018;1(2):8-19.
  • 40. Dragomanova S, Tancheva L, Georgieva M. A review: Biological activity of myrtenal and some myrtenalcontaining medicinal plant essential oils. Scripta Scientifica Pharmaceutica 2018;5(2):22-33.
  • 41. Wang C-Y, Chen Y-W, Hou C-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. International journal of food properties 2019;22(1):230-238. https://doi.org/10.1080/10942912.2019.1582541.
  • 42. Ghazal TSA, Schelz Z, Vidács L, Szemerédi N, Veres K, Spengler G, Hohmann J. Antimicrobial, Multidrug Resistance Reversal and Biofilm Formation Inhibitory Effect of Origanum majorana Extracts, Essential Oil and Monoterpenes. Plants 2022;11(11):1432. https://doi.org/10.3390/plants11111432.
  • 43. Guzman L, Nerio LS, Venturini W, Macias JP, Donoso W, Forero-Doria O. Antiplatelet and antibacterial activities of Essential Oils obtained from rhizomes and leaves of Hedychium coronarium J. Koening. Anais da Academia Brasileira de Ciências 2020;92(2):e20190615. https://doi.org/10.1590/0001-3765202020190615.
  • 44. da Silva Dannenberg G, Funck GD, da Silva WP, Fiorentini ÂM. Essential oil from pink pepper (Schinus terebinthifolius Raddi): Chemical composition, antibacterial activity and mechanism of action. Food Control 2019;95:115-120. https://doi.org/10.1016/j.foodcont.2018.07.034.
  • 45. Iseppi R, Brighenti V, Licata M, Lambertini A, Sabia C, Messi P, Pellati F, Benvenuti S. Chemical Characterization and Evaluation of the Antibacterial Activity of Essential Oils from Fibre-Type Cannabis sativa L. (Hemp). Molecules 2019;24(12):2302. https://doi.org/10.3390/molecules24122302.
  • 46. Jaafar AM, Hasnu N, Zainal Z, Masarudin MJ, Md. Ajat MM, Aung MM, Rayung M. Preparation, Characterisation and Antibacterial Activity of Carvacrol Encapsulated in Gellan Gum Hydrogel. Polymers 2021;13(23):4153.https://doi.org/10.3390/polym13234153.
  • 47. Liu Y, Li X, Sheng J, Lu Y, Sun H, Xu Q, Zhu Y, Song Y. Preparation and Enhanced Antimicrobial Activity of Thymol Immobilized on Different Silica Nanoparticles with Application in Apple Juice. Coatings 2022;12(5):671. https://doi.org/10.3390/coatings12050671.
  • 48. Rojas J, Ndong Ntoutoume GM-A, Martin P, Morillo M. Antibacterial Activity and Reversal of Multidrug Resistance of Tumor Cells by Essential Oils from Fresh Leaves, Flowers, and Stems of Montanoa quadrangularis Schultz Bipontinus (Asteraceae) Collected in Mérida—Venezuela. Biomolecules 2021;11(4):605. https://doi.org/10.3390/biom11040605.
  • 49. Fernandes LS, da Costa YFG, de Bessa ME, Ferreira ALP. Metabolic profiling and antibacterial activity of Eryngium pristis Cham. & Schltdl.-prospecting for its use in the treatment of bacterial infections. Arch Pharm Pharma Sci 2021;5(1):020-028. 10.29328/journal.apps.1001027.
  • 50. Huang J, Yang L, Zou Y, Luo S, Wang X, Liang Y, Du Y, Feng R, Wei Q. Antibacterial activity and mechanism of three isomeric terpineols of Cinnamomum longepaniculatum leaf oil. Folia Microbiologica 2021;66 (1):59-67. 10.1007/s12223-020-00818-0.
  • 51. Liu X, Cai J, Chen H, Zhong Q, Hou Y, Chen W, Chen W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis 2020;141:103980. https://doi.org/10.1016/j.micpath.2020.103980.
  • 52. Trevizan LNF, do Nascimento KF, Santos JA, Kassuya CAL, Cardoso CAL, do Carmo Vieira M, Moreira FMF, Croda J, Formagio ASN. Anti-inflammatory, antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. J Ethnopharmacol 2016;192:510-515. https://doi.org/10.1016/j.jep.2016.08.053.
  • 53. Cordeiro L, Figueiredo P, Souza H, Sousa A, Andrade-Júnior F, Barbosa-Filho J, Lima E. Antibacterial and Antibiofilm Activity of Myrtenol against Staphylococcus aureus. Pharmaceuticals 2020;13(6):133. https://doi.org/10.3390/ph13060133.
  • 54. Leite-Sampaio NF, Gondim CNFL, Martins RAA, Siyadatpanah A, Norouzi R, Kim B, Sobral-Souza CE, Gondim GEC, Ribeiro-Filho J, Coutinho HDM. Potentiation of the Activity of Antibiotics against ATCC and MDR Bacterial Strains with (+)-α-Pinene and (-)-Borneol. BioMed research international 2022;2022:8217380. 10.1155/2022/8217380.
  • 55. Chinou IB, Bougatsos C, Perdetzoglou D. Chemical composition and antimicrobial activities of Helichrysum amorginum cultivated in Greece. Journal of Essential Oil Research 2004;16(3):243-245. https://doi.org/10.1080/10412905.2004.9698711.
  • 56. Aziz P, Muhammad N, Intisar A, Abid MA, Din MI, Yaseen M, Kousar R, Aamir A, Quratulain, Ejaz R. Constituents and antibacterial activity of leaf essential oil of Plectranthus scutellarioides. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 2021;155 (6):1247-1252. https://doi.org/10.1080/11263504.2020.1837279.
  • 57. Sousa Silveira Zd, Macêdo NS, Sampaio dos Santos JF, Sampaio de Freitas T, Rodrigues dos Santos Barbosa C, Júnior DLdS, Muniz DF, Castro de Oliveira LC, Júnior JPS, Cunha FABd, Melo Coutinho HD, Balbino VQ, Martins N. Evaluation of the Antibacterial Activity and Efflux Pump Reversal of Thymol and Carvacrol against Staphylococcus aureus and Their Toxicity in Drosophila melanogaster. Molecules 2020;25(9):2103.https://doi.org/10.3390/molecules25092103.
  • 58. de Souza GHdA, dos Santos Radai JA, Mattos Vaz MS, Esther da Silva K, Fraga TL, Barbosa LS, Simionatto S. In vitro and in vivo antibacterial activity assays of carvacrol: A candidate for development of innovative treatments against KPC-producing Klebsiella pneumoniae. PloS one 2021;16 (2):e0246003. https://doi.org/10.1371/journal.pone.0246003.
  • 59. Kachur K, Suntres Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical reviews in food science and nutrition 2020;60(18):3042-3053. https://doi.org/10.1080/10408398.2019.1675585.
  • 60. Macêdo NS, de Sousa Silveira Z, Cordeiro PPM, Coutinho HDM, Júnior JPS, Júnior LJQ, Siyadatpanah A, Kim B, da Cunha FAB, da Silva MV. Inhibition of Staphylococcus aureus Efflux Pump by O-Eugenol and Its Toxicity in Drosophila melanogaster Animal Model. BioMed Res. Int. 2022;2022:1440996. 10.1155/2022/1440996.
  • 61. Selvaraj A, Jayasree T, Valliammai A, Pandian SK. Myrtenol attenuates MRSA biofilm and virulence by suppressing sarA expression dynamism. Frontiers Microbiol 2019;10:2027. https://doi.org/10.3389/fmicb.2019.02027.
  • 62. Chrystal P, Pereira AC, Fernandes CC, Souza JMd, Martins CHG, Potenza J, Crotti AEM, Miranda MLD. Essential oil from Psidium cattleianum Sabine (Myrtaceae) fresh leaves: chemical characterization and in vitro antibacterial activity against endodontic pathogens. Brazilian Arch Biol Technol 2020;63:e20190196. https://doi.org/10.1590/1678-4324-2020190196.
  • 63. Yang L, Zhan C, Huang X, Hong L, Fang L, Wang W, Su J. Durable Antibacterial Cotton Fabrics Based on Natural Borneol-Derived Anti-MRSA Agents. Adv. Healthc. Mater. 2020;9(11):2000186. https://doi.org/10.1002/adhm.202000186.
  • 64. Hess SC, Peres MT, Batista AL, Rodrigues JP, Tiviroli SC, Oliveira LG, Santos CW, Fedel LE, Crispim S, Smania Junior A. Evaluation of seasonal changes in chemical composition and antibacterial activity of Elyonurus muticus (Sprengel) O. Kuntze (Gramineae). Química Nova 2007;30 (2):370-373. https://doi.org/10.1590/S0100-40422007000200025.
  • 65. Tan M, Zhou L, Huang Y, Wang Y, Hao X, Wang J. Antimicrobial activity of globulol isolated from the fruits of Eucalyptus globulus Labill. Nat Prod Res 2008;22(7):569-575. https://doi.org/10.1080/14786410701592745.
  • 66. Merghni A, Haddaji N, Bouali N, Alabbosh KF, Adnan M, Snoussi M, Noumi E. Comparative Study of Antibacterial, Antibiofilm, Antiswarming and Antiquorum Sensing Activities of Origanum vulgare Essential Oil and Terpinene-4-ol against Pathogenic Bacteria. Life 2022;12(10):1616. https://doi.org/10.3390/life12101616.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d3b8d4fa-9d53-4260-bf25-482a7a66c2fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.