PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 76 | 02 |

Tytuł artykułu

Analysis of differences in the stability of proteins encoded in mitochondrial DNA of model organisms

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to describe the stability of proteins encoded in mtDNA, which are part of the OXPHOS system, in different model organisms and to define why certain proteins are more prone to be unstable than others. The in silico analyses involved 155 reference sequences of all proteins encoded in the mitochondrial DNA in twelve model organisms representing different phylogenetic groups. The amino acid sequences of the proteins were taken from the GenPept database. The bioinformatic analyses were performed in the ProtParam program. Thirty-eight of the 155 analyzed proteins exhibited instability. The greatest numbers of unstable mitochondrial proteins were detected in H. sapiens and A. mexicanum and the lowest levels were found in C. elegans. ND1 and ATP8 were the most unstable mitochondrial proteins. Proteins COX1 and COX3 did not exhibit instability in the examined group of organisms. The highest instability index values were recorded in the case of protein ATP8. Protein ND1 turned out to be stable in the representatives of the class invertebrates. The preliminary results of the pioneer investigations indicate that the type and number of unstable proteins encoded in mtDNA was species specific. Protein instability in lower organisms may be associated with resistance to oxidative stress. In higher organisms, in turn, protein instability may be related to the physiological production of free oxygen radicals, which play multiple roles in metabolic processes. The phenomenon of instability in the respiratory chain proteins may have a strategic function although it appears to be detrimental to the stability of the protein structure per se.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

76

Numer

02

Opis fizyczny

p.93-97,ref.

Twórcy

autor
  • Institute of Biological Bases of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
autor
  • Institute of Biological Bases of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
autor
  • Institute of Biological Bases of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
autor
  • Institute of Biological Bases of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland

Bibliografia

  • Al-Banna L., Sadder M. T., Lafi H. A., Dawabah A. A., Al-Nadhari S. N.: Bioinformatics analysis of ubiquitin expression protein gene from Heterodera latipons. Saudi J. Biol. Sci. 2018, doi.org/10.1016/j.sjbs.2018.06.005.
  • Bai Y., Sharma L. K., Lu J.: Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res. 2009, 19, 802-815.
  • Baret P., Fouarge A., Bullens P., Lints F. A.: Life-span of Drosophila melanogaster in highly oxygenated atmospheres. Mech. Ageing Dev. 1994, 76, 25-31.
  • Brand M. D.: The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 2010, 45, 466-472.
  • Cogliati S., Lorenzi I., Rigoni G., Caicci F., Soriano M. E.: Regulation of Mitochondrial Electron Transport Chain Assembly. J. Mol. Biol. 2018, 430, 4849-4873.
  • Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., Bairoch A.: Protein Identification and Analysis Tools on the ExPASy Server, [in:] John M. Walker (ed): The Proteomics Protocols Handbook. Humana Press 2005, p. 571-607.
  • Gebicki J. M., Bartosz G.: The role of proteins in propagation of damage induced by reactive oxygen species in vivo. Postepy Biochem. 2010, 56, 115-123.
  • Grzybowska-Szatkowska L., Slaska B., Rzymowska J., Brzozowska A., Floriańczyk B.: Novel mitochondrial mutations in the ATP6 and ATP8 genes in patients with breast cancer. Mol. Med. Rep. 2014, 4, 1772-1778.
  • Grzybowska-Szatkowska L., Slaska B.: Mitochondrial DNA and carcinogenesis (Review). Mol. Med. Rep. 2012, 6, 923-930.
  • Guruprasad K., Reddy B. B., Pandit M. W.: Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. Des. Sel. 1990, 4, 155-161.
  • Kowal K., Ślaska B., Bownik A., Horecka B., Gawor J., Śmiech A., Tkaczyk A.: Analysis of mitochondrial genome from Labrador (Canis lupus familiaris) with mammary gland tumour reveals novel mutations and polymorphisms. Ann. Anim. Sci. 2019 (in press).
  • Kussmaul L., Hirst J.: The mechanism of superoxide production by NADH: ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. P. Natl. Acad. Sci. USA 2006, 103, 7607-7612.
  • Magyar C., Gromiha M., Savoly I.: The role of stabilization centers in protein thermal stability. Biochem. Bioph. Res. Co. 2016 471, 57-62.
  • Mohanty K., Dada R., Dada T.: Neurodegenerative eye disorders: role of mitochondrial dynamics and genomics. Asia Pac. J. Ophthalmol. 2016, 5, 293-299.
  • Muller F. L., Lustgarten M. S., Jang Y., Richardson A., Van Remmen H.: Trendsin oxidative aging theories. Free Radical Biol. Med. 2007, 43, 477-503.
  • Pace C. N., Scholtz J. M., Grimsley G. R.: Forces stabilizing proteins FEBS Lett. 2014, 588, 2177-2184.
  • Perez V. I., Van Remmen H., Bokov A., Epstein C. J., Vijg J., Richardson A.: The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 2009, 8, 73-75.
  • Senoo-Matsuda N., Yasuda K., Tsuda M., Ohkubo T., Yoshimura S., Nakazawa H., Hartman P. S., Ishii N.: A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J. Biol. Chem. 2001, 276, 41553-41558.
  • Sharma L. K., Lu J., Bai Y.: Mitochondrial respiratory complex I: structure, function and implication in human diseases. Curr. Med. Chem. 2009, 16, 1266-1277.
  • Singh K. K., Russell J., Sigala B., Zhang Y., Williams J., Keshav K. F.: Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene 1999, 18, 6641-6646.
  • Slaska B., Grzybowska-Szatkowska L., Nisztuk S., Surdyka M., Rozanska D.: Mitochondrial DNA polymorphism in genes encoding ND1, COI and CYTB in canine malignant cancers. Mitochondr. DNA 2015, 26, 452-458.
  • St-Pierre J., Buckingham J. A., Roebuck S. J., Brand M. D.: Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 2002, 277, 44784-44790.
  • Surdyka M., Slaska B.: Defect in ND2, COX2, ATP6, and COX3 mitochondrial genes as a risk factor for canine mammary tumour. Vet. Comp. Oncol. 2017, 15, 1062-1072.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d377143c-9225-4884-8862-f60d4fd8ccff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.