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Abstract Oceanic fronts are regions over the oceans where a significant change in the charac- 
teristics of the water masses is observed. Advanced Very High Resolution Radiometer (AVHRR) 
satellite imagery over the Bay of Bengal shows regions that are populated by frontal struc- 
tures. Over the Bay of Bengal, some of the strongest gradients in temperature and salinity are 
observed. In recent years, there has been a tremendous growth in the availability of satellite 
imagery and the necessity of automated fast detection of the frontal features is needed for 
services like potential fishing zones over open oceans. In this article, an algorithm to infer 
oceanic fronts over the Bay of Bengal is described using changepoint analysis. The changepoint 
algorithm is combined in a novel way with a contextual median filter to detect frontal features 
in AVHRR imagery. The changepoint analysis is a non-parametric technique that does not put 
thresholds on the gradients of brightness temperatures of the satellite imagery. In the open 
oceans, the gradients of temperature and salinity are not sharp and changepoint analysis is 
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found to be a useful complementary technique to the existing front detecting methods when 
combined with contextual median filters. 
© 2021 Institute of Oceanology of the Polish Academy of Sciences. Production and 
hosting by Elsevier B.V. This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

atellite imagery over the oceans shows the huge water ex- 
anses in a completely different perspective. In general, 
he sea surface is characterized by regions or pockets of wa- 
er masses which show sharp changes in temperature, salin- 
ty, density or in general a parameter of specific interest like 
.g. chlorophyll concentration. These features are collec- 
ively referred to as ocean fronts ( Belkin and O’Reilly, 2009 ). 
nowledge of their formation, propagation and eventual de- 
ay over time and spatial scales is useful to understand 
rocesses like mixing. It is also linked to processes like 
pwelling, downwelling and development of near-surface 
urrents ( Halliwell Jr and Mooers, 1979 ; Williams and 
ollows, 2011 ). In the near-surface layers, wind and con- 
ection are the primary forcing parameters by which there 
s the mixing of the water masses across the horizontal and 
ertical direction ( Eladawy et al., 2017 ). 
Mixing in the upper surface is complex and occurs over 

 wide spectrum of temporal and spatial scales of mo- 
ion ( Hopkins et al., 2010 ). The water masses on either 
ide of a frontal structure can retain their properties over 
hort time scales (days to weeks). A number of studies 
how that the duration of fronts and their decay is pro- 
ortional to the slope of the gradients of the properties 
.g, sea surface temperature, and salinity among others. 
ronts also influence the optical and biogeochemical struc- 
ure ( Telesca et al., 2018 ) of the water masses signifi- 
antly. For example, the upwelling ( Kr ę żel et al., 2005 ; 
ehmann et al., 2012 ) and divergence of the cyclonic eddies 
ake the thermocline shallow and thus enhance the nutri- 
nt entrainment to the photic depths ( Gurova et al., 2013 ; 
illiams and Follows, 2011 ). The gradients of temperature 
nd salinity generally vary over scales as small as 1 m to 10—
00 km ( McWilliams, 1985 ; Qiu et al., 2017 ). The knowledge 
f the frontal structures and their role in air-sea interaction 
rocesses is useful to study climate variability, augment op- 
rational weather services and forecasting, identify poten- 
ial fishing zones, etc. ( Lehmann et al., 2012 ). 
There are limited studies on robust automatic identifica- 

ion of frontal features ( Cayula and Cornillon, 1992 , 1995 ). 
urther, satellite imagery are seldom clean and a significant 
mount of pre-processing has to be carried out to minimize 
oise before implementing front detection algorithms for 
utomatic identification of frontal features. In addition to 
he noise, problems related to missing data, presence of 
louds, sensor inaccuracies, atmospheric corrections need 
o be carefully addressed in any automated front detection 
lgorithm. 
Using AVHRR and SeaWiFS data Wang et al. (2010) studied 

he spatio-temporal relationship between the sea surface 
emperature and the migration of the squid fisheries. 
439 
roductive squid fisheries were related to the warm SST. The 
aps of sea color fronts and squid fisheries migration are 
ound to be correlated in the North Pacific Ocean region. Re- 
ently Yu et al. (2017) used a data-adaptive edge detection 
nd threshold segmentation technique to detect oil spills 
n Synthetic Aperture Radar (SAR) imagery. Stramska and 
niskiewicz (2019) used satellite imagery to study the vari- 
bility of the sea level driven by the weather patterns 
amed the major Baltic events (MBE’s), over the Baltic and 
he North Sea. During the major Baltic events, there is 
 large influx of salty waters into the North Sea and the 
altic Sea, which modulates the local air-sea interaction 
rocesses. 
The Bay of Bengal is often regarded as one of the most 

nique oceanic regions in the world. Many of the major 
ivers of south Asia such as the Ganges, the Brahmapu- 
ra and the Irrawaddy empty huge volumes of fresh wa- 
er into the Bay of Bengal. The Asian subcontinent and 
he Bay of Bengal also experience significant amounts 
f rain during the Indian summer and winter monsoon 
 Vinayachandran et al., 2013 ). Every year this is the region 
f major cyclone activity and the cyclones and monsoon to- 
ether bring a huge amount of precipitation. The freshening 
nd transport of varying density masses in the upper surface 
f the Bay then give rise to regions of sharp temperature and 
alinity gradients. A number of in-situ observations from re- 
earch ships and moorings deployed in this region show that 
he temperature and salinity induced gradients are shallow 

nd strongly stratified especially near the head Bay region. 
Many of the contemporary state-of-the-art weather and 

limate model simulations even at very high resolutions can- 
ot simulate the frontal structures. Point location observa- 
ions such as those from moorings buoys and research ships 
o not show processes at these larger spatial scales. Al- 
hough data from Argo floats have proved to be very useful 
o add to the existing observations database, their coverage 
s restricted only in the centre of the basin and thus miss out
n scientifically and strategically important regions such as 
orthern Bay and the regions along the Indian shoreline. In 
his context, remote sensing satellites have the capability 
o cover basin-wide observations and provide a basin-scale 
iew of the near-surface air-sea interaction processes. In 
his direction, Advanced Very High Resolution Radiometer 
AVHRR) data of sea surface temperature (SST), altimetry, 
nd ocean colour is routinely collected and disseminated by 
arious international agencies. 
In this paper, an innovative approach to detect tem- 

erature driven frontal structures from remotely sensed 
ST data is described. Section 2 briefly describes many of 
he feature extraction methods from images to comple- 
ent this article. These methods are widely used by the 

mage processing community and are described here for 
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ompleteness. Section 3 details a novel contextual median 
lter with particular reference to the algorithm proposed by 
elkin and O’Reilly (2009) . A contextual median filter par- 
ially overcomes many of the limitations of the various im- 
ge processing filters described in section 2 . Results on the 
hangepoint methodology for feature detection in AVHRR 
atellite imagery is described in section 4 . Here the nec- 
ssary background and details on the advantages related to 
hangepoints are also described. The main conclusions from 

his study are given in section 5 . 

. Edge detection algorithms 

rom an oceanographic context and applications, there are 
elatively few studies on the extraction of features from 

atellite imagery. However, analysis of satellite imagery 
oses a number of challenges because of the heterogeneous 
ature of the data (image matrix); for example, gaps in the 
mage matrix are common and seldom the images are noise- 
ree. Further, small scale features get degraded when the 
mages are processed by standard image processing filters 
 Gonzalez et al., 2004 ; Petrou and Petrou, 2010 ). Sub-pixel 
loud contamination is another major source of error while 
omputing the gradients of fields like temperature, salinity, 
hlorophyll, etc. The gradient operators also preferentially 
mplify the noise from the sub-pixel clouds. After the im- 
ges are processed to an acceptable level of quality which is 
ften subjective, further analyses related to morphological 
hanges and patterns are carried out by different feature 
etection algorithms. Some of the commonly used morpho- 
ogical image processing algorithms and edge detectors are 
riefly described in this section. They can be loosely catego- 
ized but not limited to (a) derivative based edge detection 
ethods ( Holyer and Peckinpaugh, 1989 ; Simpson, 1990 ); 
b) gradient-based thresholding techniques ( Oram et al., 
008 ); (c) detection based on statistical measures and his- 
ogram analysis ( Cayula and Cornillon, 1992 ); (d) surface fit 
rocedures ( Hopkins et al., 2010 ). 
Derivative based edge detectors rely on locating the 

radient discontinuities in the images. Roberts Cross, Pre- 
itt, Sobel and Canny are some widely used first or- 
er edge detectors. In this derivative based edge de- 
ection method, the differencing horizontal edge points 
n the image matrix show the vertical changes in the 
ntensity of the pixels and the horizontal edges. Very 
riefly, the horizontal edge detector is computed as E X x,y = 

 P x,y − P x+1 ,y | ∀ x ∈ 1 , N − 1 ; y ∈ 1 , N, where P x,y is pixel
ntensity at x, y location ( P x+1 ,y is pixel upon forward 
arching 1 pixel in x direction). A vertical edge detec- 
or differences vertically adjacent points and thus de- 
ects horizontal edges. The horizontal intensity changes are 
iven as E Y x,y = | P x,y − P x,y+1 | ∀ x ∈ 1 , N; y ∈ 1 , N − 1 . The
orizontal and vertical edges together are detected as 
 X Y x,y = | 2 P x,y − P x,y+1 − P x+1 ,y | ∀ x, y ∈ 1 , N − 1 . This differ-
ncing operator is called as a filter or a mask and is con- 
olved with the image matrix to detect the edge points. 
Most of the edge detectors are derived from the above 

epresentation and some of these are briefly outlined here. 
he Kirsch operator is a non-linear edge detecting oper- 
tor. A single kernel mask ( Kirsch, 1971 ) is used to find 
he maximum pixel strength along the compass directions, 
440 
.e., along the North, North-West, West, South-West, South, 
outh-East, East and North-East. The maximum magnitude 
f the pixel intensity along all the directions are consid- 
red as the edges. The Robinson edge detection method 
 Robinson, 1977 ) is similar to Kirsch algorithm but is eas- 
er to implement. The filters (masks) in Robinson edge 
etection method are symmetrical about their directional 
xis. The directional axis is taken as the axis with the ze- 
os. The matrix coefficients of the mask are symmetrical 
 −2 , −1 , 0 , 1 , 2 } . For example, for the north direction, the 
atrix coefficients row-wise are [ −1,0 1; −2 0 2; −1 0 1];
imilarly, for the north-west direction, the matrix is [0 1 2; 
1 0 1; —2 −1 0] and likewise the coefficients for the other
irections can be constructed ( Robinson, 1977 ). Because of 
he symmetry of the filter, only four masks need to be com- 
uted for this edge detection filter. 
The Sobel edge detector computes the 2-D spatial gradi- 

nts and gives more weights to regions where the gradients 
re strong. These strong spatial gradients correspond to the 
dges. Sobel operator computes the absolute gradient at 
ach point of the grey scale image. In many applications, 
he location and not the intensity of the feature boundary 
s found. Similarly, the Susan edge detector algorithm re- 
ies on a predetermined window that is centered on each 
ixel and applies a locally acting set of rules to get an edge
esponse. 
The Roberts cross algorithm ( Roberts, 1965 ) differenti- 

tes the pixels across the diagonals to estimate the hor- 
zontal and vertical edges. The filters are M 

+ = [0 1; −1 
] and M 

−= [1 0; 0 −1]. The edge pixels E x,y is the max-
mum of the two values derived by convolving the masks 
 

+ and M 

− at the image point P x,y where P x,y ; is the pix- 
ls of the image matrix. The edge points E x,y are obtained 
y convolving the masks with the image i,e., E x,y = max 
 | M 

+ ∗P x,y | , | M 

−∗P x,y | } ∀ x, y ∈ { 1 , N − 1 } . Likewise, the pre-
itt edge algorithm uses a 3 by 3 mask and edges are es-
imated by locally averaging the pixel intensities. The rate 
f change of image intensity along the x, y directions are 
iven by the masks M 

x = [0 1 −1; 1 0 −1;1 0 −1] and M 

y =
1 1 1; 0 0 0; −1 −1 −1]. The orientation of the edge is
stimated as ta n −1 ( M 

x / M 

y ) . 
The Canny edge detection algorithm is a very popular 

ethod ( Canny, 1986 ) and it is often referred to as an opti-
al edge detector. An optimal detector’s response to noise 

s small. In this algorithm, a Gaussian smoothing of the im- 
ge is carried out as a preliminary step. Canny edge detec- 
ion algorithm also has good localization properties. Good 
ocalization implies that the true edges in the images are 
reserved to large extent. True edges are identified by a 
echnique called non-maximal suppression of the pixels. 
he non-maximal suppression of the pixels generates thin 
ines of edge points at the correct places. Suitable two-level 
hresholding with hysteresis is used to connect the edge pix- 
ls. 
The Marr-Hildreth edge detector is a gradient based 

perator based on the computation of the Laplacian of an 
mage ( Nadernejad et al., 2008 ). It implements the idea 
hat a step difference in the intensity of the image can 
e represented as a zero crossing in the second deriva- 
ive of the image. In noisy images, when gradient-based 
etection is poor other techniques use the classification 
f pixels or windows of data and some form of statistical 
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Figure 1 (a) AVHRR imagery over the head bay region of Bay of Bengal on 10th January 2018; (b) contextual median filtering of 
the AVHRR image. 
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r probabilistic analysis to determine the presence of a 
ront. Few studies along these lines from an oceanographic 
ronts detection context include mathematical morphology 
lgorithms ( Krishnamurthy et al., 1994 ; Lorbacher et al., 
006 ), wavelet-based approach ( Simhadri et al., 1998 ), 
nd ordered structural edge detectors of Holland and 
an (1992) . The major obstacle in this algorithm is to 
ifferentiate between small scale features and noise. In the 
ext section, a contextual median filter is described which 
reserves the edges but at the same time does not degrade 
he small-scale features in the satellite imagery. 

. Data and methods 

he northern Bay of Bengal region was selected as a study 
rea. This region is remarkable for its variability. On the 
astern side is the presence of the East India Coastal Cur- 
ent (EICC) which traverses along the east coast of India, on 
he north is the steady influx of fresh water from the rivers 
f the Indian subcontinent, on the west side is the sustained 
pwelling from Rossby and Kelvin waves and in the centre is 
he Subtropical Anticyclonic Gyre ( Schott and McCreary Jr., 
001 ). In addition, there is the Southwest and the North- 
ast monsoon which bring a tremendous amount of rain 
nd momentum flux into the ocean. This complex feedback 
mong various processes transforms into highly complex 
ear-surface upper ocean layers and eddy structures and 
ronts. The data for this study is the Sea Surface Temper- 
ture (SST) at one kilometer resolution from Advanced Very 
igh Resolution Radiometer (AVHRR) Imagery. Figure 1 (a) 
hows an AVHRR SST image of January 10, 2018 over North- 
rn Bay of Bengal. 

. Contextual median filter 

oise minimization in images is effectively handled by me- 
ian filters. When a median filter is implemented across a 
D array of the image matrix, the filter replaces the cen- 
ral value of the sliding window by the median of the 1D 
441 
rray. However, the application of the median filter gives 
ise to a problem called extremum alteration, in which 
he pixels of high intensity get reduced ( Cayula and Cornil- 
on, 1992 , 1995 ). The features i.e., the pixels of higher in-
ensity therefore become averaged to smaller values, de- 
rading the sharp edges. This degradation of the features 
ecause of the use of the median filter defeats the very 
urpose of feature extraction. For example in feature ex- 
raction from chlorophyll data, the sharp peaks in SST which 
orresponds to local chlorophyll blooms, while ridges corre- 
pond to chlorophyll enhancement at fronts. The peaks and 
idges need to be preserved in the images for proper iden- 
ification of features. The filter is therefore required to be 
oth context sensitive and selective. Also, the images have 
o be pre-processed to fill sparse data regions and reduce 
ackground noise in the imagery. 
For oceanographic applications with a focus on the study 

f fronts from satellite imagery, a contextual median fil- 
er was previously proposed by Belkin and O’Reilly (2009) . 
ery briefly a contextual median algorithm acts as a feature- 
reserving, scale-sensitive filter and is useful to detect sea 
urface temperature fronts from AVHRR satellite imagery. 
n this article, the contextual median filter is used for pre- 
rocessing the images and it is similar to the Canny edge 
etection algorithm, where a gaussian smoothing is carried 
ut before applying a Sobel filter to detect edges. The con- 
extual median filter is also found to improve the signal to 
oise ratio of the AVHRR images. 
In this article the contextual median filter is imple- 

ented on the image matrix by first taking a 5 × 5 pix- 
ls sub-matrix and by finding the peak intensity across the 
ossible dimensions of the sub-matrix. That is, across each 
orth-south, east-west, north-west to south-east and north- 
ast to south-east directions with respect to the centre 
ixel of the sub-matrix. For each of the directions, when 
he difference of the pixel value is 5 points (on a 0—255 
cale), the sub-matrix is labelled as peak5. That is, the la- 
el peak5 implies the presence of a sharp boundary (peak in 
ntensity) over a 5 × 5 pixel window sub-matrix. In the next 
tep, the peak extraction method is carried for a smaller 
indow of 3 × 3 pixels. For the 3 × 3 pixel window this 
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C( x s +1 : T ) + K ≤ C( x( t + 1) : T ) 
s done over two dimensions. When the center pixel of the 
 × 3 sub-matrix has a 3 point difference compared to the 
est of the 5 × 5 sub-matrix surrounding it, the pixel is la- 
elled as peak3. The label peak3 is defined as the peak over 
 3 × 3 window (sub-matrix). These two labels, i.e., peak3 
mean peak intensity in a 3 by 3 pixel matrix) and peak5 
mean peak intensity in a 5 × 5 pixel matrix) are used to 
efine an indicator function. If the peak5 exists, the value 
f the pixel is not changed, if the peak5 does not exist, the 
alue is labelled as peak3. This contextual median filter is 
pplied on the centre pixel of the sub-matrix so that the fil- 
er preserves the edges and minimizes the noise. This filter 
s repeatedly applied to the input image until there are no 
hanges in data values or number of iteration does not ex- 
eed ( N − 2 ) / 2 , where N is the number of data points in the
D array to be filtered. 
Cloud free observations are difficult during the monsoon 

eason. During the winter the atmosphere is relatively cloud 
ree. However, the AVHRR imagery does have data gaps even 
uring the winter season which need to be filled before de- 
ecting the changepoints in the image matrix. For this the 
edian of the previous two images are used to fill in the 
aps in the data. Figure 1 (b) shows an example of gap filled 
mage matrix. 

In the next section, the changepoint algorithm to detect 
cean frontal features is detailed. 

. Edge detection using changepoints 

hangepoints are defined as instances in time, such that 
he statistical properties of the time series show sig- 
ificant differences before and after a given instance. 
ne of the earliest references on changepoint detection 
oes back to Page (1954) with applications in the do- 
ain of manufacturing industry and production quality con- 
rol. Changepoint analysis and detection has been called 
y different names in different fields of study. They are 
lso often referred to as segmentation in imagery, struc- 
ural break points in time series ( Chen and Gupta, 2011 ). 
n the paragraph to follow, the changepoint algorithm is 
escribed. 
Let the time series be represented as { x 1 , x 2 , ........ x n } . 

his data are taken to be an instance of a distribution with 
arameter vector θ. Assume that there occurs a change in 
roperties of the time series at some time τ . A change is de- 
ned in terms of the difference in properties between these 
wo segments. A change in the structure of the time series 
an arise from a change in the mean, or a change in vari- 
nce or some other parameter change in the distribution of 
he underlying data ( Chen and Gupta, 2011 ; Killick and Eck- 
ey, 2014 ). 

It assumed that the time series can be represented 
s x j = f( t j ) + e j ; 1 ≤ j ≤ n ; here the f(t) is a function
hich is representative of the distribution from which 
 j is derived and e j is the time sequence of errors. 
t is assumed that the function f is piecewise con- 
tant, and there exists changepoints such that f(t) = 

k ∀ p k −1 < t < p k . When the error terms are a sequence 
f independent and identically distributed gaussian vari- 
bles, then x j is also a sequence of independent gaus- 
ian variables. The time series is then modeled as x j ∼
442 
 ( μk , σ
2 ) for p k −1 < j < p k . The model depends on the 

arameters ( θ = μ1 , μ2 , .... μm 

; σ 2 , p 1 , p 2 , ..... p m 

) . A likeli- 
ood function is then constructed as L ( θ; x 1 , x 2 , .... x n ) = 

 ( x 1 , x 2 , ... x n , θ ) , where P is the probability density func- 
ion. 
The likelihood ratio L k / L k −1 of successive time series 

egments across k − 1 ; k checks the goodness of fit of two 
ompeting statistical models based on the rates of their 
ikelihood. The goodness of fit of one model is found by max- 
mization over the entire parameter space and the other fit 
s found by imposing a constraint. The constraint is the null 
ypothesis. If the null hypothesis is supported by the ob- 
erved data, the two likelihoods would not differ by more 
han the sampling error. A cost function is then associated 
ith each segment of the data. The cost of segmentation 
s the sum across each of the segments. The segmentations 
re inferred through minimization of the segmentation cost. 
ultiple changepoints in the time series are identified by 
inimizing the cost function C, which is taken as the nega- 
ive of the log of the likelihood ratio. Across multiple seg- 
ents of data, the cost function is simply the sum of the 

ndividual segments. 
 +1 

 

n =1 

[
C x p i −1 +1: p i 

)] + β f ( m ) 

In the above equation C represents the cost function for 
 segment and β f(m ) is a penalty to guard against over 
tting. Different cost functions are used in changepoint 
etection such as negative log-likelihood ( Horváth, 1993 ) 
uadratic loss and cumulative sums, or those based on both 
og-likelihood and length of segment ( Zhang et al., 2010 ). 

The solution space of the changepoints is to be made op- 
imal for efficient search. Jackson et al. (2005) proposed 
n optimal search algorithm. An efficient implementation 
f the optimal partition algorithm ( Jackson et al., 2005 ) is 
rovided by Killick and Eckley (2014) . It is implemented by 
runing the changepoint search space and thereby making 
he algorithm more computationally efficient. The change- 
oint package ( Killick and Eckley, 2014 ) in R implements 
o minimize the negative log-likelihood cost function with 
ptions of using binary segmentation, segment neighbor- 
oods and pruned exact linear time (PELT) for searching 
he changepoints. To avoid overfitting, the penalty func- 
ions provided in the R package include the Akaike’s In- 
ormation Criterion (AIC), Schwarz Information Criterion 
SIC), Bayesian Information Criterion (BIC), and the Modi- 
ed Bayesian Information Criterion (MBIC) ( Maidstone et al., 
017 ). 

.1. The PELT pseudocode 

he PELT pseudocode for the changepoint implementation 
s as follows. Details on the algorithm and computational 
tatistics on algorithm complexity are given in Killick and 
ckley (2014) . 

Input : 

1. Time series of n data points x 1 , x 2 , x 3 , .., x n where x i ∈ R .
2. Fit the data and compute the cost function C. Generally, 

a log likelihood is taken as the cost function. 
3. A constant K that satisfies equation C( x t+1: s ) + 
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Figure 2 Changepoints in AVHRR data of Bay of Bengal on 10th January 2018 along different directions; (a) column wise; (b) 
diagonal wise; (c) reverse diagonal wise; (d) row wise. 

Figure 3 Total merged changepoints and thinned image in AVHRR data of Bay of Bengal on 10th January 2018; (a) merged 
changepoints; (b) thinned image. 
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Figure 4 Merging of the frontal features and the significant fronts after suppressing the background noise and small-scale features 
in AVHRR data of Bay of Bengal on 10th January 2018; (a) merged fronts; (b) final fronts. 
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Initialize: 

• Take the length of the time series as n . 

Iterations : Iteration is carried out τ∗ = 1 , 2 , .., n 

1. Compute F ( τ∗) : mi n τ∈ R τ∗ [ F τ + C( x τ+1: τ∗ ) + β] 
2. Compute τ 1 = arg { mi n τ∈ R τ∗ [ F τ + C( x τ+1: τ∗ ) + β] } 
3. Set cp( τ∗) = [ cp( τ 1 ) , τ 1 ] 
4. Set R τ∗+1 = { τ ∗ ∈ R : F (τ ) + C( x τ+1: τ∗ ) + κ < F (τ ) } 

Output: 

• cp(n ) . The list that contains the number of changepoints 
along the specified directions. 

Edge detection using PELT involves finding changepoints 
n selected directions. Here we consider the north-south, 
ast-west, northwest-southeast and northeast-southwest 
irections of the image matrix along which the changepoint 
lgorithm is implemented. The changepoints obtained along 
hese directions are directly related to the maximum likeli- 
ood of detecting edge points. The satellite imagery shows 
hat the contrast between the land and ocean regions ef- 
ects the detection of oceanic frontal structures.The land 
egion is therefore masked such that the land edges which 
ppear as spurious frontal regions are not labeled as ocean 
ronts in the final image. Figure 2 shows the composite im- 
ge with changepoints which identify the frontal features 
long the normal and oblique directions. 
Not all the changepoints showed by the algorithm are 

dentified as potential edges or fronts. Low intensity pixels 
re not representative of significant fronts. The magnitude 
f the gradient vector of pixel intensity is used to eliminate 
ow intensity pixels. The gradient vector is computed by 
mplementing the Sobel operator on the image matrix 
hich consists of two 3 × 3 convolution derivatives. The 
erivative masks GX = [ −1 , 0 , 1 ; −2 , 0 , 2 ;−1 , 0 , 1 ] and 
Y = [ 1 , 2 , 1 ; 0 , 0 , 0 ; −1 , −2 , −1 ] are used to generate two 
ectors G x and G y , which contains approximations for 
erivatives in X and Y directions. For the original image 
444 
atrix I, the derivatives are respectively, G x = GX �I 
nd G y = GY �I, where � is a convolution operator. 
rom these equations, the gradient magnitude (GM) and 
irection (GD) can be computed as GM = 

√ 

G 

2 
x + G 

2 
y and 

D = arctan ( G y / G x ) . The gradient magnitude and directions 
n the obtained vector which are not marked as change- 
oints are suppressed and next the gradient magnitude of 
ach pixel marked as changepoint is compared with the 
radient magnitude of the pixel in the positive and negative 
radient directions which are marked as changepoint. If the 
radient magnitude of the pixel is larger compared to the 
ther pixels, the pixel is left intact. Otherwise the change- 
oint pixel is suppressed and marked as not a changepoint. 
he convolution of the changepoint matrix with the Sobel 
perator gives rise to intensity directions in R 

2 space. 
owever estimating directions in R 

2 space is not practically 
dvantageous. So directions are restricted in multiples of 
5 o . That is, the gradients are limited to directions along 
 0 o , 45 o , 90 o , 135 o , 180 o , 225 o , 270 o , 315 o } only. Figure 3 
hows the merged changepoints image in panel (a). Panel 
b) of Figure 3 shows the image after implementing the 
hinning procedure. The pixels that refer to the thinned 
dges correspond to the most likely regions of frontal 
egions. 
In the next step, the edges are to be merged using some 

bjective criteria. In the process of edge merging, the al- 
orithm checks each edge to find whether a neighboring 
dge segment or pixel with a given distance of 3 pixels 
an be merged to form a continuum. The gradient direc- 
ion is checked prior to merging the segments, to find if 
he gradient direction of edge pixels is less than 90 ◦. If 
rue, the broken edges are merged by marking the be- 
ween pixels as changepoints as shown in the left panel 
f Figure 4 . 
In the final step, a thresholding selection criteria is 

voked to suppress the fronts with minimal length and mag- 
itude. To delimit the noise, fronts with length less than 10 
ixels ( Oram et al., 2008 ) are masked. Front segments with 
inimal length greater than 10 pixels are labeled as signif- 

cant fronts. These features are shown in the right panel of 
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Figure 5 The satellite imagery and the fronts identified by the combination of the contextual median filter and the changepoint 
algorithm over 5-day period; (a) raw image of 5th January, 2013; (b) fronts of 5th January, 2013; (c) raw image of 7th January, 2013; 
(d) fronts of 7th January, 2013; (e) raw image of 10th January, 2013; (f) fronts of 10th January, 2013. 

F
p

i
t
p
h
f

p
a

6

T  

f

igure 4 . Note that the higher thresholds lead to the sup- 
ression of the smaller frontal features. 
Figure 5 shows a typical example of frontal features 

dentified by the combination of a contextual median fil- 
er and the changepoint detection algorithm over a 5-day 
eriod (5th, 7th and 10th of January 2013). The fronts are 
ighly transient in nature. However, there exist some strong 
rontal structures which persist over longer periods of time, 
445 
articularly those that are in the vicinity of the subtropical 
nticyclonic gyre (SAG). 

. Summary and conclusions 

he Bay of Bengal is populated by a large density of frontal
eatures due to its unique location and the influence of a 
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umber of forcing factors. In this article, oceanic fronts are 
dentified using a novel combination of the popular contex- 
ual median and a non-parametric multiple changepoint de- 
ection algorithm. It is expected that the fronts are highly 
ransient and their identification is often subjective. This 
ethod lends some amount of objectivity in the identifica- 
ion procedure of the fronts. The success of the method, 
owever, depends on proper pre-processing of the imagery. 
oise and clouds can give rise to spurious fronts and this is 
ot the ideal method for images filled with clouds. However, 
n inherent advantage in using the changepoint algorithm is 
hat there is no necessity to establish a threshold value on 
radients. At the first instance, the probable changepoints 
re found and then the procedure follows the classic front 
etection methods for thinning and merging. Further, the 
hresholding criteria on detected edge points is based on 
he strength of the whole front and not on individual pixel 
alues. There is scope for improving the algorithm with mul- 
iple observation sources. Data from multiple sources can be 
sed for further refinement of the results. Subsurface data 
ould be available in the future and the next step is to in- 
orporate the additional information into the change point 
nalysis to gain more insight on the frontal features. 
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