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KEYWORDS Abstract Oceanic fronts are regions over the oceans where a significant change in the charac-
Ocean fronts; teristics of the water masses is observed. Advanced Very High Resolution Radiometer (AVHRR)
Satellite imagery; satellite imagery over the Bay of Bengal shows regions that are populated by frontal struc-
Contextual median tures. Over the Bay of Bengal, some of the strongest gradients in temperature and salinity are
filter; observed. In recent years, there has been a tremendous growth in the availability of satellite
Changepoint imagery and the necessity of automated fast detection of the frontal features is needed for
detection services like potential fishing zones over open oceans. In this article, an algorithm to infer

oceanic fronts over the Bay of Bengal is described using changepoint analysis. The changepoint
algorithm is combined in a novel way with a contextual median filter to detect frontal features
in AVHRR imagery. The changepoint analysis is a non-parametric technique that does not put
thresholds on the gradients of brightness temperatures of the satellite imagery. In the open
oceans, the gradients of temperature and salinity are not sharp and changepoint analysis is
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found to be a useful complementary technique to the existing front detecting methods when
combined with contextual median filters.
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1. Introduction

Satellite imagery over the oceans shows the huge water ex-
panses in a completely different perspective. In general,
the sea surface is characterized by regions or pockets of wa-
ter masses which show sharp changes in temperature, salin-
ity, density or in general a parameter of specific interest like
e.g. chlorophyll concentration. These features are collec-
tively referred to as ocean fronts (Belkin and O’Reilly, 2009).
Knowledge of their formation, propagation and eventual de-
cay over time and spatial scales is useful to understand
processes like mixing. It is also linked to processes like
upwelling, downwelling and development of near-surface
currents (Halliwell Jr and Mooers, 1979; Williams and
Follows, 2011). In the near-surface layers, wind and con-
vection are the primary forcing parameters by which there
is the mixing of the water masses across the horizontal and
vertical direction (Eladawy et al., 2017).

Mixing in the upper surface is complex and occurs over
a wide spectrum of temporal and spatial scales of mo-
tion (Hopkins et al., 2010). The water masses on either
side of a frontal structure can retain their properties over
short time scales (days to weeks). A number of studies
show that the duration of fronts and their decay is pro-
portional to the slope of the gradients of the properties
e.g, sea surface temperature, and salinity among others.
Fronts also influence the optical and biogeochemical struc-
ture (Telesca et al., 2018) of the water masses signifi-
cantly. For example, the upwelling (Krezel et al., 2005;
Lehmann et al., 2012) and divergence of the cyclonic eddies
make the thermocline shallow and thus enhance the nutri-
ent entrainment to the photic depths (Gurova et al., 2013;
Williams and Follows, 2011). The gradients of temperature
and salinity generally vary over scales as small as 1 m to 10—
100 km (McWilliams, 1985; Qiu et al., 2017). The knowledge
of the frontal structures and their role in air-sea interaction
processes is useful to study climate variability, augment op-
erational weather services and forecasting, identify poten-
tial fishing zones, etc. (Lehmann et al., 2012).

There are limited studies on robust automatic identifica-
tion of frontal features (Cayula and Cornillon, 1992, 1995).
Further, satellite imagery are seldom clean and a significant
amount of pre-processing has to be carried out to minimize
noise before implementing front detection algorithms for
automatic identification of frontal features. In addition to
the noise, problems related to missing data, presence of
clouds, sensor inaccuracies, atmospheric corrections need
to be carefully addressed in any automated front detection
algorithm.

Using AVHRR and SeaWiFS data Wang et al. (2010) studied
the spatio-temporal relationship between the sea surface
temperature and the migration of the squid fisheries.
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Productive squid fisheries were related to the warm SST. The
maps of sea color fronts and squid fisheries migration are
found to be correlated in the North Pacific Ocean region. Re-
cently Yu et al. (2017) used a data-adaptive edge detection
and threshold segmentation technique to detect oil spills
in Synthetic Aperture Radar (SAR) imagery. Stramska and
Aniskiewicz (2019) used satellite imagery to study the vari-
ability of the sea level driven by the weather patterns
named the major Baltic events (MBE’s), over the Baltic and
the North Sea. During the major Baltic events, there is
a large influx of salty waters into the North Sea and the
Baltic Sea, which modulates the local air-sea interaction
processes.

The Bay of Bengal is often regarded as one of the most
unique oceanic regions in the world. Many of the major
rivers of south Asia such as the Ganges, the Brahmapu-
tra and the Irrawaddy empty huge volumes of fresh wa-
ter into the Bay of Bengal. The Asian subcontinent and
the Bay of Bengal also experience significant amounts
of rain during the Indian summer and winter monsoon
(Vinayachandran et al., 2013). Every year this is the region
of major cyclone activity and the cyclones and monsoon to-
gether bring a huge amount of precipitation. The freshening
and transport of varying density masses in the upper surface
of the Bay then give rise to regions of sharp temperature and
salinity gradients. A number of in-situ observations from re-
search ships and moorings deployed in this region show that
the temperature and salinity induced gradients are shallow
and strongly stratified especially near the head Bay region.

Many of the contemporary state-of-the-art weather and
climate model simulations even at very high resolutions can-
not simulate the frontal structures. Point location observa-
tions such as those from moorings buoys and research ships
do not show processes at these larger spatial scales. Al-
though data from Argo floats have proved to be very useful
to add to the existing observations database, their coverage
is restricted only in the centre of the basin and thus miss out
on scientifically and strategically important regions such as
northern Bay and the regions along the Indian shoreline. In
this context, remote sensing satellites have the capability
to cover basin-wide observations and provide a basin-scale
view of the near-surface air-sea interaction processes. In
this direction, Advanced Very High Resolution Radiometer
(AVHRR) data of sea surface temperature (SST), altimetry,
and ocean colour is routinely collected and disseminated by
various international agencies.

In this paper, an innovative approach to detect tem-
perature driven frontal structures from remotely sensed
SST data is described. Section 2 briefly describes many of
the feature extraction methods from images to comple-
ment this article. These methods are widely used by the
image processing community and are described here for
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completeness. Section 3 details a novel contextual median
filter with particular reference to the algorithm proposed by
Belkin and O’Reilly (2009). A contextual median filter par-
tially overcomes many of the limitations of the various im-
age processing filters described in section 2. Results on the
changepoint methodology for feature detection in AVYHRR
satellite imagery is described in section 4. Here the nec-
essary background and details on the advantages related to
changepoints are also described. The main conclusions from
this study are given in section 5.

2. Edge detection algorithms

From an oceanographic context and applications, there are
relatively few studies on the extraction of features from
satellite imagery. However, analysis of satellite imagery
poses a number of challenges because of the heterogeneous
nature of the data (image matrix); for example, gaps in the
image matrix are common and seldom the images are noise-
free. Further, small scale features get degraded when the
images are processed by standard image processing filters
(Gonzalez et al., 2004; Petrou and Petrou, 2010). Sub-pixel
cloud contamination is another major source of error while
computing the gradients of fields like temperature, salinity,
chlorophyll, etc. The gradient operators also preferentially
amplify the noise from the sub-pixel clouds. After the im-
ages are processed to an acceptable level of quality which is
often subjective, further analyses related to morphological
changes and patterns are carried out by different feature
detection algorithms. Some of the commonly used morpho-
logical image processing algorithms and edge detectors are
briefly described in this section. They can be loosely catego-
rized but not limited to (a) derivative based edge detection
methods (Holyer and Peckinpaugh, 1989; Simpson, 1990);
(b) gradient-based thresholding techniques (Oram et al.,
2008); (c) detection based on statistical measures and his-
togram analysis (Cayula and Cornillon, 1992); (d) surface fit
procedures (Hopkins et al., 2010).

Derivative based edge detectors rely on locating the
gradient discontinuities in the images. Roberts Cross, Pre-
witt, Sobel and Canny are some widely used first or-
der edge detectors. In this derivative based edge de-
tection method, the differencing horizontal edge points
in the image matrix show the vertical changes in the
intensity of the pixels and the horizontal edges. Very
briefly, the horizontal edge detector is computed as Ex, , =
Py — Pet1yl VX €1,N—1, y €1,N, where P, is pixel
intensity at x,y location (P, is pixel upon forward
marching 1 pixel in x direction). A vertical edge detec-
tor differences vertically adjacent points and thus de-
tects horizontal edges. The horizontal intensity changes are
given as Ey, =[Py — Pyl Vx €1,N; vy € 1,N—1. The
horizontal and vertical edges together are detected as
Exyx_y = |2Px,y — Fxy+1 — Px+17y| VX,V e 1, N — 1. This differ-
encing operator is called as a filter or a mask and is con-
volved with the image matrix to detect the edge points.

Most of the edge detectors are derived from the above
representation and some of these are briefly outlined here.
The Kirsch operator is a non-linear edge detecting oper-
ator. A single kernel mask (Kirsch, 1971) is used to find
the maximum pixel strength along the compass directions,
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i.e., along the North, North-West, West, South-West, South,
South-East, East and North-East. The maximum magnitude
of the pixel intensity along all the directions are consid-
ered as the edges. The Robinson edge detection method
(Robinson, 1977) is similar to Kirsch algorithm but is eas-
ier to implement. The filters (masks) in Robinson edge
detection method are symmetrical about their directional
axis. The directional axis is taken as the axis with the ze-
ros. The matrix coefficients of the mask are symmetrical
{—2,-1,0,1,2}. For example, for the north direction, the
matrix coefficients row-wise are [-1,01; —202; —1 0 1];
similarly, for the north-west direction, the matrix is [0 1 2;
—101; —2 —1 0] and likewise the coefficients for the other
directions can be constructed (Robinson, 1977). Because of
the symmetry of the filter, only four masks need to be com-
puted for this edge detection filter.

The Sobel edge detector computes the 2-D spatial gradi-
ents and gives more weights to regions where the gradients
are strong. These strong spatial gradients correspond to the
edges. Sobel operator computes the absolute gradient at
each point of the grey scale image. In many applications,
the location and not the intensity of the feature boundary
is found. Similarly, the Susan edge detector algorithm re-
lies on a predetermined window that is centered on each
pixel and applies a locally acting set of rules to get an edge
response.

The Roberts cross algorithm (Roberts, 1965) differenti-
ates the pixels across the diagonals to estimate the hor-
izontal and vertical edges. The filters are M*= [0 1; —1
0] and M—= [1 0; 0 —1]. The edge pixels Ey, is the max-
imum of the two values derived by convolving the masks
M* and M~ at the image point P, where P, ,; is the pix-
els of the image matrix. The edge points E,, are obtained
by convolving the masks with the image i,e., E,, = max
{IMTxPy|, IM %P1} V X,y € {1, N —1}. Likewise, the pre-
witt edge algorithm uses a 3 by 3 mask and edges are es-
timated by locally averaging the pixel intensities. The rate
of change of image intensity along the x,y directions are
given by the masks M= [01 —1; 10 —1;1 0 —1] and W=
[111;,000; —1 —1 —1]. The orientation of the edge is
estimated as tan~—! (M*/MY).

The Canny edge detection algorithm is a very popular
method (Canny, 1986) and it is often referred to as an opti-
mal edge detector. An optimal detector’s response to noise
is small. In this algorithm, a Gaussian smoothing of the im-
age is carried out as a preliminary step. Canny edge detec-
tion algorithm also has good localization properties. Good
localization implies that the true edges in the images are
preserved to large extent. True edges are identified by a
technique called non-maximal suppression of the pixels.
The non-maximal suppression of the pixels generates thin
lines of edge points at the correct places. Suitable two-level
thresholding with hysteresis is used to connect the edge pix-
els.

The Marr-Hildreth edge detector is a gradient based
operator based on the computation of the Laplacian of an
image (Nadernejad et al., 2008). It implements the idea
that a step difference in the intensity of the image can
be represented as a zero crossing in the second deriva-
tive of the image. In noisy images, when gradient-based
detection is poor other techniques use the classification
of pixels or windows of data and some form of statistical
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Figure 1  (a) AVHRR imagery over the head bay region of Bay of Bengal on 10th January 2018; (b) contextual median filtering of

the AVHRR image.

or probabilistic analysis to determine the presence of a
front. Few studies along these lines from an oceanographic
fronts detection context include mathematical morphology
algorithms (Krishnamurthy et al., 1994; Lorbacher et al.,
2006), wavelet-based approach (Simhadri et al., 1998),
and ordered structural edge detectors of Holland and
Yan (1992). The major obstacle in this algorithm is to
differentiate between small scale features and noise. In the
next section, a contextual median filter is described which
preserves the edges but at the same time does not degrade
the small-scale features in the satellite imagery.

3. Data and methods

The northern Bay of Bengal region was selected as a study
area. This region is remarkable for its variability. On the
eastern side is the presence of the East India Coastal Cur-
rent (EICC) which traverses along the east coast of India, on
the north is the steady influx of fresh water from the rivers
of the Indian subcontinent, on the west side is the sustained
upwelling from Rossby and Kelvin waves and in the centre is
the Subtropical Anticyclonic Gyre (Schott and McCreary Jr.,
2001). In addition, there is the Southwest and the North-
east monsoon which bring a tremendous amount of rain
and momentum flux into the ocean. This complex feedback
among various processes transforms into highly complex
near-surface upper ocean layers and eddy structures and
fronts. The data for this study is the Sea Surface Temper-
ature (SST) at one kilometer resolution from Advanced Very
High Resolution Radiometer (AVHRR) Imagery. Figure 1(a)
shows an AVHRR SST image of January 10, 2018 over North-
ern Bay of Bengal.

4. Contextual median filter

Noise minimization in images is effectively handled by me-
dian filters. When a median filter is implemented across a
1D array of the image matrix, the filter replaces the cen-
tral value of the sliding window by the median of the 1D
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array. However, the application of the median filter gives
rise to a problem called extremum alteration, in which
the pixels of high intensity get reduced (Cayula and Cornil-
lon, 1992, 1995). The features i.e., the pixels of higher in-
tensity therefore become averaged to smaller values, de-
grading the sharp edges. This degradation of the features
because of the use of the median filter defeats the very
purpose of feature extraction. For example in feature ex-
traction from chlorophyll data, the sharp peaks in SST which
corresponds to local chlorophyll blooms, while ridges corre-
spond to chlorophyll enhancement at fronts. The peaks and
ridges need to be preserved in the images for proper iden-
tification of features. The filter is therefore required to be
both context sensitive and selective. Also, the images have
to be pre-processed to fill sparse data regions and reduce
background noise in the imagery.

For oceanographic applications with a focus on the study
of fronts from satellite imagery, a contextual median fil-
ter was previously proposed by Belkin and O’Reilly (2009).
Very briefly a contextual median algorithm acts as a feature-
preserving, scale-sensitive filter and is useful to detect sea
surface temperature fronts from AVHRR satellite imagery.
In this article, the contextual median filter is used for pre-
processing the images and it is similar to the Canny edge
detection algorithm, where a gaussian smoothing is carried
out before applying a Sobel filter to detect edges. The con-
textual median filter is also found to improve the signal to
noise ratio of the AVHRR images.

In this article the contextual median filter is imple-
mented on the image matrix by first taking a 5 x 5 pix-
els sub-matrix and by finding the peak intensity across the
possible dimensions of the sub-matrix. That is, across each
north-south, east-west, north-west to south-east and north-
east to south-east directions with respect to the centre
pixel of the sub-matrix. For each of the directions, when
the difference of the pixel value is 5 points (on a 0—255
scale), the sub-matrix is labelled as peak5. That is, the la-
bel peak5 implies the presence of a sharp boundary (peak in
intensity) over a 5 x 5 pixel window sub-matrix. In the next
step, the peak extraction method is carried for a smaller
window of 3 x 3 pixels. For the 3 x 3 pixel window this
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is done over two dimensions. When the center pixel of the
3 x 3 sub-matrix has a 3 point difference compared to the
rest of the 5 x 5 sub-matrix surrounding it, the pixel is la-
belled as peak3. The label peak3 is defined as the peak over
a 3 x 3 window (sub-matrix). These two labels, i.e., peak3
(mean peak intensity in a 3 by 3 pixel matrix) and peak5
(mean peak intensity in a 5 x 5 pixel matrix) are used to
define an indicator function. If the peak5 exists, the value
of the pixel is not changed, if the peak5 does not exist, the
value is labelled as peak3. This contextual median filter is
applied on the centre pixel of the sub-matrix so that the fil-
ter preserves the edges and minimizes the noise. This filter
is repeatedly applied to the input image until there are no
changes in data values or number of iteration does not ex-
ceed (N — 2)/2, where N is the number of data points in the
1D array to be filtered.

Cloud free observations are difficult during the monsoon
season. During the winter the atmosphere is relatively cloud
free. However, the AVHRR imagery does have data gaps even
during the winter season which need to be filled before de-
tecting the changepoints in the image matrix. For this the
median of the previous two images are used to fill in the
gaps in the data. Figure 1(b) shows an example of gap filled
image matrix.

In the next section, the changepoint algorithm to detect
ocean frontal features is detailed.

5. Edge detection using changepoints

Changepoints are defined as instances in time, such that
the statistical properties of the time series show sig-
nificant differences before and after a given instance.
One of the earliest references on changepoint detection
goes back to Page (1954) with applications in the do-
main of manufacturing industry and production quality con-
trol. Changepoint analysis and detection has been called
by different names in different fields of study. They are
also often referred to as segmentation in imagery, struc-
tural break points in time series (Chen and Gupta, 2011).
In the paragraph to follow, the changepoint algorithm is
described.

Let the time series be represented as {xi, Xz, ........ Xn).
This data are taken to be an instance of a distribution with
parameter vector 6. Assume that there occurs a change in
properties of the time series at some time 7. A change is de-
fined in terms of the difference in properties between these
two segments. A change in the structure of the time series
can arise from a change in the mean, or a change in vari-
ance or some other parameter change in the distribution of
the underlying data (Chen and Gupta, 2011; Killick and Eck-
ley, 2014).

It assumed that the time series can be represented
as xj = f(tj)+ej;1 < j<n; here the f(t) is a function
which is representative of the distribution from which
x;j is derived and e; is the time sequence of errors.
It is assumed that the function f is piecewise con-
stant, and there exists changepoints such that f(t)=
ux ¥ pk_1 < t < px. When the error terms are a sequence
of independent and identically distributed gaussian vari-
ables, then x; is also a sequence of independent gaus-
sian variables. The time series is then modeled as x; ~

442

N (uk, o) for py_1 < j < px. The model depends on the
parameters (0 = i1, 2, ....itm} 0%, P1, P2y -....Pm). A likeli-
hood function is then constructed as L(0; x1, X2, ....Xp) =
P(X4, X2, ...Xn, 0), where P is the probability density func-
tion.

The likelihood ratio L/Ly_4 of successive time series
segments across k — 1; k checks the goodness of fit of two
competing statistical models based on the rates of their
likelihood. The goodness of fit of one model is found by max-
imization over the entire parameter space and the other fit
is found by imposing a constraint. The constraint is the null
hypothesis. If the null hypothesis is supported by the ob-
served data, the two likelihoods would not differ by more
than the sampling error. A cost function is then associated
with each segment of the data. The cost of segmentation
is the sum across each of the segments. The segmentations
are inferred through minimization of the segmentation cost.
Multiple changepoints in the time series are identified by
minimizing the cost function C, which is taken as the nega-
tive of the log of the likelihood ratio. Across multiple seg-
ments of data, the cost function is simply the sum of the
individual segments.

m+1
Z [CXPM“ZPf)] +pf(m)
n=1

In the above equation C represents the cost function for
a segment and B f(m) is a penalty to guard against over
fitting. Different cost functions are used in changepoint
detection such as negative log-likelihood (Horvath, 1993)
quadratic loss and cumulative sums, or those based on both
log-likelihood and length of segment (Zhang et al., 2010).

The solution space of the changepoints is to be made op-
timal for efficient search. Jackson et al. (2005) proposed
an optimal search algorithm. An efficient implementation
of the optimal partition algorithm (Jackson et al., 2005) is
provided by Killick and Eckley (2014). It is implemented by
pruning the changepoint search space and thereby making
the algorithm more computationally efficient. The change-
point package (Killick and Eckley, 2014) in R implements
to minimize the negative log-likelihood cost function with
options of using binary segmentation, segment neighbor-
hoods and pruned exact linear time (PELT) for searching
the changepoints. To avoid overfitting, the penalty func-
tions provided in the R package include the Akaike’s In-
formation Criterion (AIC), Schwarz Information Criterion
(SIC), Bayesian Information Criterion (BIC), and the Modi-
fied Bayesian Information Criterion (MBIC) (Maidstone et al.,
2017).

5.1. The PELT pseudocode

The PELT pseudocode for the changepoint implementation
is as follows. Details on the algorithm and computational
statistics on algorithm complexity are given in Killick and
Eckley (2014).

Input:

1. Time series of n data points x1, X2, X3, .., X, Where x; € R.

2. Fit the data and compute the cost function C. Generally,
a log likelihood is taken as the cost function.

3. A constant K that satisfies equation C(X¢y1:5)+
CXsp1 : T)+K<C(x(t+1):T)
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Figure 2 Changepoints in AVHRR data of Bay of Bengal on 10th January 2018 along different directions; (a) column wise; (b)
diagonal wise; (c) reverse diagonal wise; (d) row wise.
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Figure 3 Total merged changepoints and thinned image in AVHRR data of Bay of Bengal on 10th January 2018; (a) merged

changepoints; (b) thinned image.
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Figure 4 Merging of the frontal features and the significant fronts after suppressing the background noise and small-scale features
in AVHRR data of Bay of Bengal on 10th January 2018; (a) merged fronts; (b) final fronts.

Initialize:
» Take the length of the time series as n.

Iterations: Iteration is carried out tx =1,2,..,n

1. Compute F(zx) : min.cp_, [FT 4+ C(X;11:0+) + B]

2. Compute 7' = arg{min ez . [FT + C(X;s1:0¢) + B}
3. Set cp(rx) = [ep(t), ']

4. Set Ryoq = {1* € R: F(t) +C(Xeprier) + 5 < F (1))

Output:

e cp(n). The list that contains the number of changepoints
along the specified directions.

Edge detection using PELT involves finding changepoints
in selected directions. Here we consider the north-south,
east-west, northwest-southeast and northeast-southwest
directions of the image matrix along which the changepoint
algorithm is implemented. The changepoints obtained along
these directions are directly related to the maximum likeli-
hood of detecting edge points. The satellite imagery shows
that the contrast between the land and ocean regions ef-
fects the detection of oceanic frontal structures.The land
region is therefore masked such that the land edges which
appear as spurious frontal regions are not labeled as ocean
fronts in the final image. Figure 2 shows the composite im-
age with changepoints which identify the frontal features
along the normal and oblique directions.

Not all the changepoints showed by the algorithm are
identified as potential edges or fronts. Low intensity pixels
are not representative of significant fronts. The magnitude
of the gradient vector of pixel intensity is used to eliminate
low intensity pixels. The gradient vector is computed by
implementing the Sobel operator on the image matrix
which consists of two 3 x 3 convolution derivatives. The
derivative masks GX =[-1,0,1;-2,0,2;-1,0,1] and
GY =1[1,2,1;0,0,0; -1, —2, —1] are used to generate two
vectors Gx and Gy, which contains approximations for
derivatives in X and Y directions. For the original image
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matrix |, the derivatives are respectively, G, = GXOI
and G, =GYG®Il, where © is a convolution operator.
From these equations, the gradient magnitude (GM) and

direction (GD) can be computed as GM = ,/G% + G} and

GD = arctan(G,/Gx). The gradient magnitude and directions
in the obtained vector which are not marked as change-
points are suppressed and next the gradient magnitude of
each pixel marked as changepoint is compared with the
gradient magnitude of the pixel in the positive and negative
gradient directions which are marked as changepoint. If the
gradient magnitude of the pixel is larger compared to the
other pixels, the pixel is left intact. Otherwise the change-
point pixel is suppressed and marked as not a changepoint.
The convolution of the changepoint matrix with the Sobel
operator gives rise to intensity directions in R? space.
However estimating directions in R? space is not practically
advantageous. So directions are restricted in multiples of
45°, That is, the gradients are limited to directions along
{0°, 45°,90°, 135°, 180°, 225°,270°, 315°} only. Figure 3
shows the merged changepoints image in panel (a). Panel
(b) of Figure 3 shows the image after implementing the
thinning procedure. The pixels that refer to the thinned
edges correspond to the most likely regions of frontal
regions.

In the next step, the edges are to be merged using some
objective criteria. In the process of edge merging, the al-
gorithm checks each edge to find whether a neighboring
edge segment or pixel with a given distance of 3 pixels
can be merged to form a continuum. The gradient direc-
tion is checked prior to merging the segments, to find if
the gradient direction of edge pixels is less than 90°. If
true, the broken edges are merged by marking the be-
tween pixels as changepoints as shown in the left panel
of Figure 4.

In the final step, a thresholding selection criteria is
evoked to suppress the fronts with minimal length and mag-
nitude. To delimit the noise, fronts with length less than 10
pixels (Oram et al., 2008) are masked. Front segments with
minimal length greater than 10 pixels are labeled as signif-
icant fronts. These features are shown in the right panel of
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Figure 5 The satellite imagery and the fronts identified by the combination of the contextual median filter and the changepoint
algorithm over 5-day period; (a) raw image of 5th January, 2013; (b) fronts of 5th January, 2013; (c) raw image of 7th January, 2013;
(d) fronts of 7th January, 2013; (e) raw image of 10th January, 2013; (f) fronts of 10th January, 2013.

Figure 4. Note that the higher thresholds lead to the sup-
pression of the smaller frontal features.

Figure 5 shows a typical example of frontal features
identified by the combination of a contextual median fil-
ter and the changepoint detection algorithm over a 5-day
period (5th, 7th and 10th of January 2013). The fronts are
highly transient in nature. However, there exist some strong
frontal structures which persist over longer periods of time,
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particularly those that are in the vicinity of the subtropical
anticyclonic gyre (SAG).

6. Summary and conclusions

The Bay of Bengal is populated by a large density of frontal
features due to its unique location and the influence of a
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number of forcing factors. In this article, oceanic fronts are
identified using a novel combination of the popular contex-
tual median and a non-parametric multiple changepoint de-
tection algorithm. It is expected that the fronts are highly
transient and their identification is often subjective. This
method lends some amount of objectivity in the identifica-
tion procedure of the fronts. The success of the method,
however, depends on proper pre-processing of the imagery.
Noise and clouds can give rise to spurious fronts and this is
not the ideal method for images filled with clouds. However,
an inherent advantage in using the changepoint algorithm is
that there is no necessity to establish a threshold value on
gradients. At the first instance, the probable changepoints
are found and then the procedure follows the classic front
detection methods for thinning and merging. Further, the
thresholding criteria on detected edge points is based on
the strength of the whole front and not on individual pixel
values. There is scope for improving the algorithm with mul-
tiple observation sources. Data from multiple sources can be
used for further refinement of the results. Subsurface data
would be available in the future and the next step is to in-
corporate the additional information into the change point
analysis to gain more insight on the frontal features.
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