PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 84 | 1 |

Tytuł artykułu

The impacts of BSMV on vegetative growth and water status in hulless barley (Hordeum vulgare var. nudum) in VIGS study

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Barley stripe mosaic virus (BSMV) is an established and extensively used virus-induced gene silencing (VIGS) vector for gene function analysis in monocots. However, the phenotypes generated by targeted gene silencing may be affected or masked by symptoms of BSMV infection. To better understand the potential effects of BSMV-VIGS in hulless barley (Hordeum vulgare var. nudum), the accumulation pattern of BSMV and its impacts on vegetative growth and water status were investigated. The results indicated that the vegetative growth of infected plants was significantly and continuously impacted by BSMV from 10 to 40 days post inoculation (dpi). When the accumulation of BSMV was extremely high (7 to 11 dpi), infected plants displayed twisted leaf tips with an increased water lose rate (WLR) and decreased water content (WC). Virus accumulation declined and stabilized after 25 dpi, at this stage, the WLR and WC were unaffected in the infected plants. The efficiency of VIGS was tested by the silencing of Phytoene desaturase (PDS). RT-qPCR indicated that BSMV-VIGS can be sustained with good efficiency for up to 40 dpi under an altered condition with lower temperature (22 ±1°C) and higher relative humidity (70 ±10%). It was concluded that 25 to 40 dpi was the appropriate time zone for drought-related gene analysis by BSMV-VIGS under such condition.

Wydawca

-

Rocznik

Tom

84

Numer

1

Opis fizyczny

p.43-51,fig.,ref.

Twórcy

autor
  • Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu 610041, China
autor
  • Chengdu Institute of Biology, Chinese Academy of Sciences, No 9 Section 4, Renmin South Road, Chengdu 610041, China
  • College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
autor
  • Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu 610041, China
autor
  • Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu 610041, China
autor
  • Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu 610041, China
autor
  • Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu 610041, China
autor
  • Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu 610041, China
autor
  • Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu 610041, China

Bibliografia

  • 1. Kumagai M, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill L. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derivedRNA. Proc Natl Acad Sci USA. 1995;92(5):1679–1683. http://dx.doi.org/10.1073/pnas.92.5.1679
  • 2. Ratcliff F, Harrison BD, Baulcombe DC. A similarity between viral defense and gene silencing in plants. Science. 1997;276(5318):1558–1560.http://dx.doi.org/10.1126/science.276.5318.1558
  • 3. Baulcombe DC. Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol. 1999;2(2):109–113. http://dx.doi.org/10.1016/S1369-5266(99)80022-3
  • 4. Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 2004;39(5):734–746. http://dx.doi.org/10.1111/j.1365-313X.2004.02158.x
  • 5. Lee WS, Hammond-Kosack KE, Kanyuka K. Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: VIGS, HIGS and VOX. Plant Physiol. 2012;160(2):582–590. http://dx.doi.org/10.1104/pp.112.203489
  • 6. Holzberg S, Brosio P, Gross C, Pogue GP. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 2002;30(3):315–327.http://dx.doi.org/10.1046/j.1365-313X.2002.01291.x
  • 7. Lacomme C, Hrubikova K, Hein I. Enhancement of virusinduced gene silencing through viral-based production ofinverted-repeats. Plant J. 2003;34(4):543–553. http://dx.doi.org/10.1046/j.1365-313X.2003.01733.x
  • 8. Scofield SR, Huang L, Brandt AS, Gill BS. Development of a virusinduced gene-silencing system for hexaploid wheat and its use infunctional analysis of the Lr21-mediated leaf rust resistance pathway.Plant Physiol. 2005;138(4):2165–2173. http://dx.doi.org/10.1104/pp.105.061861
  • 9. Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, et al. Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistancein barley. Plant Physiol. 2005;138(4):2155–2164. http://dx.doi.org/10.1104/pp.105.062810
  • 10. Hu P, Meng Y, Wise RP. Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetrationresistance in barley-powdery mildew interactions. Mol PlantMicrobe Interact. 2009;22(3):311–320. http://dx.doi.org/10.1094/mpmi-22-3-0311
  • 11. Meng Y, Moscou MJ, Wise RP. Blufensin1 negatively impacts basal defense in response to barley powdery mildew. Plant Physiol. 2009;149(1):271–285. http://dx.doi.org/10.1104/pp.108.129031
  • 12. Scofield SR, Nelson RS. Resources for virus-induced gene silencing in the grasses. Plant Physiol. 2009;149(1):152–157. http://dx.doi.org/10.1104/pp.108.128702
  • 13. Cakir C, Gillespie ME, Scofield SR. Rapid determination of gene function by virus-induced gene silencing in wheat and barley. Crop Sci.2010;50(S1):S-77–S-84. http://dx.doi.org/10.2135/cropsci2009.10.0567
  • 14. Almási A, Apatini D, Bóka K, Böddi B, Gáborjányi R. BSMV infection inhibits chlorophyll biosynthesis in barley plants. PhysiolMol Plant Pathol. 2000;56(6):227–233. http://dx.doi.org/10.1006/pmpp.2000.0266
  • 15. Bennypaul HS. Genetic analysis and functional genomic tool development to characterize resistance gene candidates in wheat (Triticumaestivum L.) [PhD thesis]. Pullman, WA: Washington State University;2008.
  • 16. Senthil-Kumar M, Mysore KS. New dimensions for VIGS in plant functional genomics. Trends Plant Sci. 2011;16(12):656–665. http://dx.doi.org/10.1016/j.tplants.2011.08.006
  • 17. Qian G, Han Z, Zhao T, Deng G, Pan Z, Yu M. Genotypic variability in sequence and expression of HVA1 gene in Tibetan hullessbarley, Hordeum vulgare ssp. vulgare, associated with resistance towater deficit. Aust J Agric Res. 2007;58(5):425–431. http://dx.doi.org/10.1071/AR06300
  • 18. Senthil-Kumar M, Rame Gowda HV, Hema R, Mysore KS, Udayakumar M. Virus-induced gene silencing and its application in characterizinggenes involved in water-deficit-stress tolerance. J Plant Physiol.2008;165(13):1404–1421. http://dx.doi.org/10.1016/j.jplph.2008.04.007
  • 19. Demmig-Adams B, Adams Iii W. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol PlantMol Biol. 1992;43:599–626. http://dx.doi.org/10.1146/annurev.pp.43.060192.003123
  • 20. Ruiz MT, Voinnet O, Baulcombe DC. Initiation and maintenance of virus-induced gene silencing. Plant Cell. 1998;10(6):937–946. http://dx.doi.org/10.1105/tpc.10.6.937
  • 21. Angell SM, Baulcombe DC. Technical advance: potato virus X amplicon- mediated silencing of nuclear genes. Plant J. 1999;20:357–362.http://dx.doi.org/10.1046/j.1365-313X.1999.00597.x
  • 22. Ratcliff F, Martin-Hernandez AM, Baulcombe DC. Technical advance: tobacco rattle virus as a vector for analysis of genefunction by silencing. Plant J. 2001;25(2):237–245. http://dx.doi.org/10.1046/j.0960-7412.2000.00942.x
  • 23. Liang J, Deng G, Long H, Pan Z, Wang C, Cai P, et al. Virus-induced silencing of genes encoding LEA protein in Tibetan hulless barley (Hordeum vulgare ssp. vulgare) and their relationship to droughttolerance. Mol Breed. 2012;30(1):441–451. http://dx.doi.org/10.1007/s11032-011-9633-3
  • 24. Zhou H, Li S, Deng Z, Wang X, Chen T, Zhang J, et al. Molecular analysis of three new receptor-like kinase genes from hexaploid wheatand evidence for their participation in wheat hypersensitive responseto stripe rust fungus infection. Plant J. 2007;52(3):420–434. http://dx.doi.org/10.1111/j.1365-313X.2007.03246.x
  • 25. Haupt S, Duncan GH, Holzberg S, Oparka KJ. Evidence for symplastic phloem unloading in sink leaves of barley. Plant Physiol.2001;125(1):209–218. http://dx.doi.org/10.1104/pp.125.1.209
  • 26. Maule A, Leh V, Lederer C. The dialogue between viruses and hosts in compatible interactions. Curr Opin Plant Biol. 2002;5(4):279–284.http://dx.doi.org/10.1016/S1369-5266(02)00272-8
  • 27. Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, et al. High throughput virus-induced gene silencing implicates heat shock protein90 in plant disease resistance. EMBO J. 2003;22(21):5690–5699. http://dx.doi.org/10.1093/emboj/cdg546
  • 28. Voinnet O. RNA silencing as a plant immune system against viruses. Trends Genet. 2001;17(8):449–459. http://dx.doi.org/10.1016/ S0168-9525(01)02367-8
  • 29. Montalbini P, Lupattelli M. Effect of localized and systemic tobacco mosaic virus infection on some photochemical and enzymaticactivities of isolated tobacco chloroplasts. Physiol Mol Plant Pathol.1989;34(2):147–162. http://dx.doi.org/10.1016/0885-5765(89)90022-2
  • 30. Funayama S, Sonoike K, Terashima I. Photosynthetic properties of leaves of Eupatorium makinoi infected by a geminivirus. Photosynth Res. 1997;53(2–3):253–261. http://dx.doi. org/10.1023/A:1005884007183
  • 31. Funayama S, Terashima I. Effects of geminivirus infection and growth irradiance on the vegetative growth and photosynthetic productionof Eupatorium makinoi. New Phytol. 1999;142(3):483–494. http://dx.doi.org/10.1046/j.1469-8137.1999.00418.x
  • 32. Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M. Stability of Barley stripe mosaic virus-induced gene silencing in barley. Mol Plant Microbe Interact. 2007;20(11):1323–1331. http://dx.doi.org/10.1094/mpmi-20-11-1323
  • 33. Senthil-Kumar M, Mysore KS. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings inNicotiana benthamiana and tomato. Plant Biotechnol J. 2011;9(7):797–806. http://dx.doi.org/10.1111/j.1467-7652.2011.00589.x
  • 34. Ryu CM, Anand A, Kang L, Mysore KS. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J. 2004;40(2):322–331. http://dx.doi.org/10.1111/j.1365-313X.2004.02211.x
  • 35. Fu DQ, Zhu BZ, Zhu HL, Zhang HX, Xie YH, Jiang WB, et al. Enhancement of virus-induced gene silencing in tomato by lowtemperature and low humidity. Mol Cells. 2006;21:153–160.
  • 36. Tuttle JR, Idris AM, Brown JK, Haigler CH, Robertson D. Geminivirusmediated gene silencing from Cotton leaf crumple virus is enhanced bylow temperature in cotton. Plant Physiol. 2008;148(1):41–50. http://dx.doi.org/10.1104/pp.108.123869
  • 37. Cakir C, Tör M. Factors influencing Barley stripe mosaic virusmediated gene silencing in wheat. Physiol Mol Plant Pathol. 2010;74(3– 4):246–253. http://dx.doi.org/10.1016/j.pmpp.2010.04.001
  • 38. Lin NS, Langenberg W. Distribution of Barley stripe mosaic virus protein in infected wheat root and shoot tips. J Gen Virol. 1984;65(12):2217–2224. http://dx.doi.org/10.1099/0022-1317-65-12-2217
  • 39. Campbell J, Huang L. Silencing of multiple genes in wheat using Barley stripe mosaic virus. J Biotech Res. 2010;2:12–20.
  • 40. Huang C, Qian Y, Li Z, Zhou X. Virus-induced gene silencing and its application in plant functional genomics. Sci China Life Sci. 2012;55(2):99–108. http://dx.doi.org/10.1007/s11427-012-4280-4

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d231d53f-f238-418f-98c7-f207da794434
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.