PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 2 |

Tytuł artykułu

Pb(II) and cu(II) sorption from aqueous solutions using activated red mud – evaluation of kinetic, equilibrium, and thermodynamic models

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We investigated the influence of contact time, sorbent dose, and initial Cu(II) or Pb(II) concentrations on the removal of Cu(II) and Pb(II) from aqueous solution by the batch sorption technique using activated red mud (aBauxsol) as a low-cost sorbent. Sorption equilibrium was achieved after 1 h at pH 5.5 for both ions. Pseudo first and pseudo second order models were used for analyzing the kinetics of sorption processes. The rate of both sorption processes is controlled by diffusion in the film fluid and diffusion within particles. The processes of sorption follow the Langmuir model.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

2

Opis fizyczny

p.377-385,fig.,ref.

Twórcy

autor
  • Faculty of Metallurgy and Technology, Cetinjski put bb, 20000 Podgorica, Montenegro
autor
  • Institute of Public Health of Montenegro, Ljubljanska bb, 20000 Podgorica, Montenegro
  • Faculty of Metallurgy and Technology, Cetinjski put bb, 20000 Podgorica, Montenegro
  • Faculty of Metallurgy and Technology, Cetinjski put bb, 20000 Podgorica, Montenegro
autor
  • Faculty of Metallurgy and Technology, Cetinjski put bb, 20000 Podgorica, Montenegro
autor
  • Institute of Public Health of Montenegro, Ljubljanska bb, 20000 Podgorica, Montenegro

Bibliografia

  • 1. ALLEN S.J., BROWN P.A. Isotherm analysis for single component and multi- component metal sorption onto lignite. J. Chem. Tech. Biotechnol., 62, 17, 1995.
  • 2. GUPTA K.V., GUPTA M., SHARMA S. Process development for the removal of lead and Chromium from aqueous solutions using red mud-an aluminum industry waste. Water Res., 35, 1125, 2001.
  • 3. ZHU B., TONGXIANG F., ZHANG D. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J. Hazard. Mater., 153, 300, 2008.
  • 4. EJIKEME P. M., OKOYE A. I., ONUKWULI O. D. Kinetics and Isotherm Studies of Cu²⁺ and Pb²⁺ Ions Removal from Simulated Waste Water by Gambeya Albida Seed Shell Activated Carbon. The African Review of Physics, 6, 143, 2011.
  • 5. OZER A. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran. J. Hazard. Mater., 141, (3), 753, 2007.
  • 6. NADAROGLU H., KALKAN E., DEMIR N. Removal of copper from aqueous solution using red mud. Desalination, 251, 90, 2010.
  • 7. WHO, Guidelines for drinking water quality. Ed., Geneva, Switzerland, 2011.
  • 8. ESALAH O.J., WEBER M.E., VERA J.H. Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Can. J. Chem. Eng., 78, 948, 2000.
  • 9. ZOUBOULIS A.I., MATIS K.A., LANARA B.G., NESKOVIC C.L. Removal of cadmium from Dilute solutions by hydroxy apatite. II. floatation studies. Separ. Sci. Technol., 32, 1755, 1997.
  • 10. CANET L., ILPIDE M., SEAT P. Efficient facilitated transport of lead, cadmium, zinc and silver across a flat sheet-supported liquid membrane mediaed by lasalocid A. Separ. Sci. Technol., 37, 1851, 2002.
  • 11. AL-DEGS Y., TUTUNJI M., BAKER H. Isothermal and kinetic sorption behaviour of Pb²⁺ ions on natural silicate minerals. Clay Miner., 38, 501, 2003.
  • 12. YAVUZ O., ALTUNKAYNAK Y., GU¨ZEL F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res., 37, 948, 2003.
  • 13. ECHEVERRIA J.C., ZARRANS I., ESTELLA J., GARRIDO J.J. Simultaneous effect of pH, temperature, ionic strenght and initial concennntration on the retention of lead on illite. Appl. Clay Sci., 30, (1), 103, 2005.
  • 14. HEFNE J. A., MEKHEMER W.K., ALANDIS N.M., ALDAYEL O.A., ALAJYAN T. Kinetic and thermodynamic study of the adsorption of Pb(II) from aqueous solution to the natural and treated bentonite. International Journal of Physical Sciences., 3, (11), 281, 2008.
  • 15. KOCAOBAA S., ORHANB Y., AKYUZE T. Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite. Desalination, 214, 1, 2007.
  • 16. KHRAIHEH M.A.M., AL-DEGS Y.S., MCMINN W.A.M. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem. Eng. J., 99, 177, 2004.
  • 17. OKOYE A. I., EJIKEME P. M., ONUKWULI O. D. Lead removal from wastewater using fluted pumpkin seed shel activated carbon:Adsorption modeling and kinetics. Int. J. Environ. Sci. Tech., 7, (4), 793, 2010.
  • 18. MOUSAVI H.Z., HOSSEINIFAR A., JAHED V. Removal of Cu(II) from wastewater by waste tire rubber ash. J. Serb. Chem. Soc., 75, (6), 845, 2010.
  • 19. BHATNAGAR A., VILAR V.J.P., BOTELHO C.M.S., BOAVENTURA R.A.R. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ. Technol., 32, (3), 231, 2011.
  • 20. GENÇ-FUHRMAN H., TJELL J.C., MCCONCHIE D. Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol., 38, 2428, 2004.
  • 21. CASTALDI P., SILVETTI M., ENZO S., MELIS P. Study of sorption processes and FT-IR analysis of arsenate sorbed onto red muds (a bauxite ore processing waste). J. Hazard. Mater., 175, 172, 2010.
  • 22. DURSUN S., GUCLU D., BERKTAY A., GUNER T. Removal of chromate from aqueous system by activated red-mud. Asian J. Chem., 20, 6473, 2008.
  • 23. SMILJANIC S., SMICIKLAS I., PERIC-GRUJIC A., LONCAR B., MITRIC M. Rinsed and thermally treated red mud sorbents for aqueous Ni²⁺ ions. Chem. Eng. J., 162, 75, 2010.
  • 24. ZHU C., LUAN Z., WANG Y., SHAN X. Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM). Sep. Purif. Technol., 57, 161, 2007.
  • 25. VACLAVIKOVA M., MISAELIDES P., GALLIOS G., JAKABSKY S., HREDZAK S. Removal of cadmium, zinc, copper and lead by red mud, an iron oxides containing hydrometallurgical waste. Stud. Surf. Sci. Catal., 155, 517, 2005.
  • 26. PRATT K.C., CHRISTOVERSON V. Hydrogenation of a Model Hydrogen-Donor System Using Activated Red Mud Catalyst. Fuel, 61, 460, 1982.
  • 27. VUKAŠINOVIĆ-PEŠIĆ V.L., RAJAKOVIĆ-OGNJANOVIĆ V.N., BLAGOJEVIĆ N.Z., GRUDIĆ V.V., JOVANOVIĆ B.M., RAJAKOVIĆ LJ.V. Enhanced arsenic removal from water by activated red mud based on hydrated iron(III) and titan(IV) oxides. Chem. Eng. Commun. [in press].
  • 28. QUADER R., AKHTAR S. Kinetics study of Lead ion Adsorption on Active carbon,. Turk. J. Chem., 29, 95, 2005.
  • 29. JIMÉNEZ-CEDILLO M.J., OLGUÍN M.T., FALL CH. Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron-manganese-modified clinoptilolite-rich tuffs. J. Hazard. Mater., 163, 939, 2009.
  • 30. CHEUHG W.H., SZETO Y.S., MCKAY G. Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol., 98, 2897, 2007.
  • 31. CHUTIA P., CATO S., KOJIMA T., SATOKAWA S. Arsenic adsorption from aqueous solution on synthetic zeolites. J. Hazard. Mater., 162, 440, 2009.
  • 32. JEONG Y., FAN M., SINGH S., CHUANG C.L., SAHA B., VAN LEEUWEN J.H. Evaluation of iron oxide and aluminium oxide as potential arsenic(V) adsorbents. Chem. Eng. Process., 46, 1030, 2007.
  • 33. BHAKAT P.B., GUPTA A.K., AYOOB S., KUNDU S. Investigations on arsenic(V) removal by modified calcined bauxite. Colloids and Surfaces A: Physicochem. Eng. Aspects, 281, 237, 2006.
  • 34. KADIELU K., NAMASIVAYAM C. Activated carbon from coconut coir pith s metal adsorbent: Adsorption of Cd(II) from aqueous solution. Adv. Environ. Res., 7, (2), 471, 2003.
  • 35. VASANTH KUMARA K., PORKODI K. Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum notatum. J. Hazard Mater., 146, 214, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d203efeb-0b68-4162-9c37-89c43f2e8764
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.