PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 07 |

Tytuł artykułu

The time course of NO involved in ABA pathway to improve drought tolerance in Oxytropis ochrocephala Bunge

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Oxytropis ochrocephala Bunge is a poisonous legume plant which exhibits drought acclimation behavior and spreads rapidly under adverse environment. This study demonstrates that the stress signals including NO (nitric oxide), ABA (abscisic acid), and H2O2 (Hydrogen peroxide) are involved in roots of O. ochrocephala seedlings when exposed to drought stress simulated by PEG-6000 solution. The relationship among these signals was investigated by using exogenous and endogenous modulators. The results indicate that a time course of NO is accumulated in roots of O. ochrocephala in response to drought stress, which is generated enzymatically by nitrate reductase (NR) activity. The low level of NO acts as a downstream signaling of ABA and is involved with H2O2 signaling cascade. There is a regulatory mechanism of controlling NO concentration and maintaining the equilibrium state between ROS (reactive oxygen species) and NO, which modulates the root cell vitality, and osmotic adjustment thus improves root growth and developmental processes under drought stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

07

Opis fizyczny

fig.,ref.

Twórcy

autor
  • Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Science, Northwest University, Xi'an, 710069, China
autor
  • Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Science, Northwest University, Xi'an, 710069, China
autor
  • Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Science, Northwest University, Xi'an, 710069, China
autor
  • Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Science, Northwest University, Xi'an, 710069, China
autor
  • Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Science, Northwest University, Xi'an, 710069, China
autor
  • Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Science, Northwest University, Xi'an, 710069, China
autor
  • Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Science, Northwest University, Xi'an, 710069, China

Bibliografia

  • Anjum SA, Xie XY, Wang L, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032
  • Barrero J, Rodriguez PL, Quesada V, Piqueras P, Ponce MR, Micol JL (2006) Both abscisic acid (ABA)-dependent and ABAindependent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ 29:2000–2008
  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207
  • Cao M, Liu X, Zhang Y, Xue X, Melcher K, Zhou XE, Gao P, Wang F, Zeng L, Zhao Y, Deng P, Zhong D, Zhu JK, Xu HE, Xu Y (2013) An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res 23:1043–1054. doi:10.1038/cr.2013.95
  • Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Gomez-Rodriguez MV, Pedrajas JR, Begara-Morales JC, Sanchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2010) Mechanical wounding induces a nitrosative stress by downregulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813. doi:10.1093/jxb/erq358
  • Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, Leon AM, Sandalio LM, Rio LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733. doi:10.1104/pp.104.042812
  • Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM, Sandalio LM, Rio LA (2006) Constitutive argininedependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254. doi:10.1007/s00425-005-0205-9
  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611. doi:10.1016/j.plantsci.2011.04.005
  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, di Toppi LS, Schiavo FL (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228
  • Deng M, Moureaux T, Caboche M (1989) Tungstate, a molybdate analog inactivating nitrate reductase, deregulates the expression of the nitrate reductase structural gene. Plant Physiol 91:304–309
  • Fan QJ, Liu JH (2012) Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Rep 31:145–154. doi:10.1007/s00299-011-1148-1
  • Filippou P, Antoniou C, Fotopoulos V (2011) Effect of drought and rewatering on the cellular status and antioxidant response of Medicago truncatula plants. Plant Signal Behav 6:270–277
  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442. doi:10.1016/j.pbi.2006.05.014
  • Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan KH, Xu ZH, Chong K (2004) Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol 135:1502–1513
  • Goldstein S (2003) Reactions of PTIO and carboxy-PTIO with *NO, *NO2, and O2-*. J Biol Chem 278:50949–50955
  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103
  • Hancock JT, Neill SJ, Wilson ID (2011) Nitric oxide and ABA in the control of plant function. Plant Sci 181:555–559. doi:10.1016/j. plantsci.2011.03.017
  • He JM, Ma XG, Zhang Y, Sun TF, Xu FF, Chen YP, Liu X, Yue M (2013) Role and interrelationship of Ga protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves. Plant Physiol 161:1570–1583. doi:10.1104/pp.112.211623
  • Hu LY, Hu SL, Wu J, Li YH, Zheng JL, Wei ZJ, Liu J, Wang HL, Liu YS, Zhang H (2012) Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. J Agric Food Chem 60:8684–8693
  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410
  • Jiang SS, Zhang D, Wang L, Pan JW, Liu Y, Kong XP, Zhou Y, Li DQ (2013) A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem 71:112–120. doi:10.1016/j.plaphy.2013. 07.004
  • Koca H, Bor M, Özdemir F, Türkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351
  • Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453
  • Kolbert Z, Ortega L, Erdei L (2010) Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots. J Plant Physiol 167:77–80. doi:10.1016/j.jplph.2009.08.013
  • Kováčik J, Grúz J, Klejdus B, Štork F, Marchiosi R, Ferrarese-Filho O (2010) Lignification and related parameters in copper-exposed Matricaria chamomilla roots: role of H2O2 and NO in this process. Plant Sci 179:383–389. doi:10.1016/j.plantsci.2010.06.014
  • Kováčik J, Babula P, Hedbavny J, Švec P (2014a) Manganeseinduced oxidative stress in two ontogenetic stages of chamomile and amelioration by nitric oxide. Plant Sci 215:1–10. doi:10.1016/j.plantsci.2013.10.015
  • Kováčik J, Babula P, Klejdus B, Hedbavny J, Jarošová M (2014b) Unexpected behavior of some nitric oxide modulators under cadmium excess in plant tissue. PLoS One 9:e91685
  • Leon J, Castillo MC, Coego A, Lozano-Juste J, Mir R (2013) Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. J Exp Bot 65:907–921. doi:10.1093/jxb/ert454
  • Li Q, Li JN, Tao SL, Ding YJ, He L, Wang Z (2009) Research progress on toxicity, harm and prevention of Oxytropis. Pratacultural Sci 4:027
  • Lu H, Wang SS, Zhou QW, Zhao YN, Zhao BY (2012) Damage and control of major poisonous plants in the western grasslands of China—a review. Rangel J 34:329. doi:10.1071/rj12057
  • Lu S, Zhuo C, Wang X, Guo Z (2014) Nitrate reductase (NR)-dependent NO production mediates ABA- and H2O2-induced antioxidant enzymes. Plant Physiol Biochem 74:9–15. doi:10. 1016/j.plaphy.2013.10.030
  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018
  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467
  • Mioto PT, Mercier H (2013) Abscisic acid and nitric oxide signaling in two different portions of detached leaves of Guzmania monostachia with CAM up-regulated by drought. J Plant Physiol 170:996–1002. doi:10.1016/j.jplph.2013.02.004
  • Mirabella R, Rauwerda H, Struys EA, Jakobs C, Triantaphylidés C, Haring MA, Schuurink RC (2008) The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness. Plant J 53:197–213
  • Murgia I, de Pinto MC, Delledonne M, Soave C, De Gara L (2004) Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. J Plant Physiol 161:777–783
  • Olson P, Varner J (1993) Hydrogen peroxide and lignification. Plant J 4:887–892
  • Planchet E, Verdu I, Delahaie J, Cukier C, Girard C, Morere-Le Paven MC, Limami AM (2014) Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula. J Exp Bot. doi:10.1093/jxb/eru088
  • Qiao W, Li C, Fan LM (2014) Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environ Exp Bot 100:84–93. doi:10.1016/j.envexpbot.2013.12.014
  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401
  • Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461
  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006. doi:10.1007/s00299-013-1414-5
  • Sang J, Jiang M, Lin F, Xu S, Zhang A, Tan M (2008) Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants. J Integr Plant Biol 50:231–243. doi:10.1111/j.1744-7909.2007. 00594.x
  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302
  • Signorelli S, Corpas FJ, Borsani O, Barroso JB, Monza J (2013) Water stress induces a differential and spatially distributed nitrooxidative stress response in roots and leaves of Lotus japonicus. Plant Sci 201–202:137–146. doi:10.1016/j.plantsci.2012.12.004
  • Silveira LR, Pereira-Da-Silva L, Juel C, Hellsten Y (2003) Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radic Biol Med 35:455–464
  • Simontacchi M, García-Mata C, Bartoli CG, Santa-María GE, Lamattina L (2013) Nitric oxide as a key component in hormone-regulated processes. Plant Cell Rep 32:853–866. doi:10.1007/s00299-013-1434-1
  • Steffens B, Sauter M (2005) Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol 139:713–721
  • Tang T, Zhou QP, LI YL (2007) Study on germination condition of Oxytropis Ochrocephala Bunge. Seed 9:013
  • Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J (2006) Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol 172:92–103
  • Tewari RK, Kim S, Hahn EJ, Paek KY (2008) Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng. Plant Biotechnol Rep 2:113–122
  • Tian X, Lei Y (2006) Nitric oxide treatment alleviates drought stress in wheat seedlings. Biol Plant 50:775–778
  • Van der Zee R, Murohara T, Luo Z, Zollmann F, Passeri J, Lekutat C, Isner JM (1997) Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation 95:1030–1037
  • Vital SA, Fowler RW, Virgen A, Gossett DR, Banks SW, Rodriguez J (2008) Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environ Exp Bot 62:60–68
  • Vitecek J, Reinohl V, Jones RL (2008) Measuring NO production by plant tissues and suspension cultured cells. Mol Plant 1:270–284. doi:10.1093/mp/ssm020
  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577. doi:10.1016/j.plaphy.2009.02.009
  • Weiler E, Jourdan P, Conrad W (1981) Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta 153:561–571
  • Wyn Jones RG, Gorham J (1983) Osmoregulation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology III. Encyclopedia of plant physiology. New edition, vol 12C, Springer, Berlin, pp 35–38
  • Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with longterm zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334. doi:10.1104/pp.110.162982
  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981
  • Yoshioka T, Endo T, Satoh S (1998) Restoration of seed germination at supraoptimal temperatures by fluridone, an inhibitor of abscisic acid biosynthesis. Plant Cell Physiol 39:307–312
  • Zhao BY et al (2010) Damage and control of poisonous weeds in western grassland of China. Agric Sci China 9:1512–1521
  • Zhao M, Gao X, Wang J, He X, Han B (2012) A review of the most economically important poisonous plants to the livestock industry on temperate grasslands of China. J Appl Toxicol 33:9–17. doi:10.1002/jat.2789
  • Zhou B, Guo Z, Xing J (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56:3223–3228. doi:10.1093/jxb/eri319
  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant. 53.091401.143329
  • Ziogas V, Tanou G, Filippou P, Diamantidis G, Vasilakakis M, Fotopoulos V, Molassiotis A (2013) Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiol Biochem 68:118–126. doi:10.1016/j.plaphy.2013.04.004

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-d02c6789-39f8-4114-9e09-2db0c2fec3a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.