PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 1 |

Tytuł artykułu

microRNAs fine tuning of erythropoiesis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cell proliferation and differentiation is a complex process involving many cellular mechanisms. One of the best-studied phenomena in cell differentiation is erythrocyte development during hematopoiesis in vertebrates. In recent years, a new class of small, endogenous, non-coding RNAs called microRNAs (miRNAs) emerged as important regulators of gene expression at the post-transcriptional level. Thousands of miRNAs have been identified in various organisms, including protozoa, fungi, bacteria and viruses, proving that the regulatory miRNA pathway is conserved in evolution. There are many examples of miRNA-mediated regulation of gene expression in the processes of cell proliferation, differentiation and apoptosis, and in cancer genesis. Many of the collected data clearly show the dependence of the proteome of a cell on the qualitative and quantitative composition of endogenous miRNAs. Numerous specific miRNAs are present in the hematopoietic erythroid line. This review attempts to summarize the state of knowledge on the role of miRNAs in the regulation of different stages of erythropoiesis. Original experimental data and results obtained with bioinformatics tools were combined to elucidate the currently known regulatory network of miRNAs that guide the process of differentiation of red blood cells.

Wydawca

-

Rocznik

Tom

18

Numer

1

Opis fizyczny

p.34-46,fig.,ref.

Twórcy

  • Department of Molecular Biology, University of Zielona Gora, Zielona Gora, Poland
autor
  • Department of Molecular Biology, University of Zielona Gora, Zielona Gora, Poland
  • Department of Molecular Biology, University of Zielona Gora, Zielona Gora, Poland
autor
  • Department of Molecular Biology, University of Zielona Gora, Zielona Gora, Poland
  • Department of Hematology, Medical University of Wroclaw, Poland
autor
  • Department of Molecular Biology, University of Zielona Gora, Zielona Gora, Poland
  • Laboratory of Cytochemistry, Faculty of Biotechnology, University of Wroclaw, Poland

Bibliografia

  • 1. http://www.mirbase.org
  • 2. Azzouzi, I., Moest, H., Winkler, J., Fauchere, J.C., Gerber, A.P., Wollscheid, B., Stoffel, M., Schmugge, M. and Speer, O. MicroRNA-96 directly inhibits gamma-globin expression in human erythropoiesis. PLoS One 6 (2011) e22838.
  • 3. Lytle, J.R., Yario, T.A. and Steitz, J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc. Natl. Acad. Sci. USA 104 (2007) 9667-9672.
  • 4. Kloosterman, W.P., Wienholds, E., Ketting, R.F. and Plasterk, R.H. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 32 (2004) 6284-6291.
  • 5. Tsai, N.P., Lin, Y.L. and Wei, L.N. MicroRNA mir-346 targets the 5'-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem. J. 424 (2009) 411-418.
  • 6. Wang, X.J., Reyes, J.L., Chua, N.H. and Gaasterland, T. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 5 (2004) R65.
  • 7. Lee, R.C., Feinbaum, R.L. and Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75 (1993) 843-854.
  • 8. Guglielmelli, P., Tozzi, L., Bogani, C., Iacobucci, I., Ponziani, V., Martinelli, G., Bosi, A. and Vannucchi, A.M. Overexpression of microRNA16-2 contributes to the abnormal erythropoiesis in polycythemia vera. Blood 117 (2011) 6923-6927.
  • 9. Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K. and Shiekhattar, R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436 (2005) 740-744.
  • 10. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., Lin, C., Socci, N.D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R.U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D.B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H.I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C.E., Nagle, J.W., Ju, J., Papavasiliou, F.N., Benzing, T., Lichter, P., Tam, W., Brownstein, M.J., Bosio, A., Borkhardt, A., Russo, J.J., Sander, C., Zavolan, M. and Tuschl, T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129 (2007) 1401-1414.
  • 11. Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M. and Lai, E.C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130 (2007) 89-100.
  • 12. Ruby, J.G., Jan, C.H. and Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature 448 (2007) 83-86.
  • 13. Han, J., Lee, Y., Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang, B.T. and Kim, V.N. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125 (2006) 887-901.
  • 14. Cifuentes, D., Xue, H., Taylor, D.W., Patnode, H., Mishima, Y., Cheloufi, S., Ma, E., Mane, S., Hannon, G.J., Lawson, N.D., Wolfe, S.A. and Giraldez, A.J. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328 (2010) 1694-1698.
  • 15. http://www.ncbi.nlm.nih.gov/nuccore/NR_027350
  • 16. Tanzer, A. and Stadler, P.F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339 (2004) 327-335.
  • 17. Ventura, A., Young, A.G., Winslow, M.M., Lintault, L., Meissner, A., Erkeland, S.J., Newman, J., Bronson, R.T., Crowley, D., Stone, J.R., Jaenisch, R., Sharp, P.A. and Jacks, T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132 (2008) 875-886.
  • 18. http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000687
  • 19. Ota, A., Tagawa, H., Karnan, S., Tsuzuki, S., Karpas, A., Kira, S., Yoshida, Y. and Seto, M. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64 (2004) 3087-3095.
  • 20. Bruchova, H., Yoon, D., Agarwal, A.M., Mendell, J. and Prchal, J.T. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp. Hematol. 35 (2007) 1657-1667.
  • 21. Zhang, L., Flygare, J., Wong, P., Lim, B. and Lodish, H.F. miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev. 25 (2011) 119-124.
  • 22. Wang, Q., Huang, Z., Xue, H., Jin, C., Ju, X.L., Han, J.D. and Chen, Y.G. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 111 (2008) 588-595.
  • 23. Yu, D., dos Santos, C.O., Zhao, G., Jiang, J., Amigo, J.D., Khandros, E., Dore, L.C., Yao, Y., D'Souza, J., Zhang, Z., Ghaffari, S., Choi, J., Friend, S., Tong, W., Orange, J.S., Paw, B.H. and Weiss, M.J. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 24 (2010) 1620-1633.
  • 24. Lu, J., Guo, S., Ebert, B.L., Zhang, H., Peng, X., Bosco, J., Pretz, J., Schlanger, R., Wang, J.Y., Mak, R.H., Dombkowski, D.M., Preffer, F.I., Scadden, D.T. and Golub, T.R. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev. Cell 14 (2008) 843-853.
  • 25. Dore, L.C., Amigo, J.D., Dos Santos, C.O., Zhang, Z., Gai, X., Tobias, J. W., Yu, D., Klein, A. M., Dorman, C., Wu, W., Hardison, R.C., Paw, B.H. and Weiss, M.J. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl. Acad. Sci. USA 105 (2008) 3333-3338.
  • 26. Pase, L., Layton, J.E., Kloosterman, W.P., Carradice, D., Waterhouse, P.M. and Lieschke, G.J. miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood 113 (2009) 1794-1804.
  • 27. Anguita, E., Hughes, J., Heyworth, C., Blobel, G.A., Wood, W.G. and Higgs, D.R. Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J. 23 (2004) 2841- 2852.
  • 28. Rasmussen, K.D., Simmini, S., Abreu-Goodger, C., Bartonicek, N., Di Giacomo, M., Bilbao-Cortes, D., Horos, R., Von Lindern, M., Enright, A.J. and O'Carroll, D. The miR-144/451 locus is required for erythroid homeostasis. J. Exp. Med. 207 (2010) 1351-1358.
  • 29. Patrick, D.M., Zhang, C.C., Tao, Y., Yao, H., Qi, X., Schwartz, R.J., JunShen Huang, L. and Olson, E.N. Defective erythroid differentiation in miR451 mutant mice mediated by 14-3-3zeta. Genes Dev. 24 (2010) 1614-1619.
  • 30. Aitken, A. 14-3-3 proteins: a historic overview. Semin. Cancer Biol. 16 (2006) 162-172.
  • 31. Sangokoya, C., Telen, M.J. and Chi, J.T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116 (2010) 4338-4348.
  • 32. Fu, Y.F., Du, T.T., Dong, M., Zhu, K.Y., Jing, C.B., Zhang, Y., Wang, L., Fan, H.B., Chen, Y., Jin, Y., Yue, G.P., Chen, S.J., Chen, Z., Huang, Q.H., Jing, Q., Deng, M. and Liu, T.X. Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis. Blood 113 (2009) 1340-1349.
  • 33. Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., Valtieri, M., Calin, G.A., Liu, C.G., Sorrentino, A., Croce, C.M. and Peschle, C. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA 102 (2005) 18081-18086.
  • 34. Zhao, H., Kalota, A., Jin, S. and Gewirtz, A.M. The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood 113 (2009) 505-516.
  • 35. Andolfo, I., De Falco, L., Asci, R., Russo, R., Colucci, S., Gorrese, M., Zollo, M. and Iolascon, A. Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica 95 (2010) 1244-1252.
  • 36. Felli, N., Pedini, F., Romania, P., Biffoni, M., Morsilli, O., Castelli, G., Santoro, S., Chicarella, S., Sorrentino, A., Peschle, C. and Marziali, G. MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 94 (2009) 479-486.
  • 37. Bank, A. Regulation of human fetal hemoglobin: new players, new complexities. Blood 107 (2006) 435-443.
  • 38. Schechter, A.N. Hemoglobin research and the origins of molecular medicine. Blood 112 (2008) 3927-3938.
  • 39. Hamilton, A.J. and Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286 (1999) 950-952.
  • 40. Lippman, Z., Gendrel, A.V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K., Mittal, V., May, B., Kasschau, K.D., Carrington, J.C., Doerge, R.W., Colot, V. and Martienssen, R. Role of transposable elements in heterochromatin and epigenetic control. Nature 430 (2004) 471-476.
  • 41. Reinhart, B.J. and Bartel, D.P. Small RNAs correspond to centromere heterochromatic repeats. Science 297 (2002) 1831.
  • 42. Allen, E., Xie, Z., Gustafson, A.M. and Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121 (2005) 207-221.
  • 43. Borsani, O., Zhu, J., Verslues, P.E., Sunkar, R. and Zhu, J.K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123 (2005) 1279-1291.
  • 44. Mochizuki, K. and Gorovsky, M.A. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev. 19 (2005) 77-89.
  • 45. Seto, A.G., Kingston, R.E. and Lau, N.C. The coming of age for Piwi proteins. Mol. Cell 26 (2007) 603-609.
  • 46. Choong, M. L., Yang, H.H. and McNiece, I. MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp. Hematol. 35 (2007) 551-564.
  • 47. Wang, F., Yu, J., Yang, G.H., Wang, X.S. and Zhang, J.W. Regulation of erythroid differentiation by miR-376a and its targets. Cell Res. 21 (2011) 1196-1209.
  • 48. Starczynowski, D.T., Kuchenbauer, F., Argiropoulos, B., Sung, S., Morin, R., Muranyi, A., Hirst, M., Hogge, D., Marra, M., Wells, R.A., Buckstein, R., Lam, W., Humphries, R.K. and Karsan, A. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat. Med. 16 (2010) 49-58.
  • 49. Labbaye, C., Spinello, I., Quaranta, M.T., Pelosi, E., Pasquini, L., Petrucci, E., Biffoni, M., Nuzzolo, E.R., Billi, M., Foa, R., Brunetti, E., Grignani, F., Testa, U. and Peschle, C. A three-step pathway comprising PLZF/miR146a/CXCR4 controls megakaryopoiesis. Nat. Cell Biol. 10 (2008) 788-801.
  • 50. Grabher, C., Payne, E.M., Johnston, A.B., Bolli, N., Lechman, E., Dick, J.E., Kanki, J.P. and Look, A.T. Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia 25 (2011) 506-514.
  • 51. Romania, P., Lulli, V., Pelosi, E., Biffoni, M., Peschle, C. and Marziali, G. MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors. Br. J. Haematol. 143 (2008) 570-580.
  • 52. Fazi, F., Rosa, A., Fatica, A., Gelmetti, V., De Marchis, M.L., Nervi, C. and Bozzoni, I. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123 (2005) 819-831.
  • 53. Sankaran, V.G., Menne, T.F., Scepanovic, D., Vergilio, J.A., Ji, P., Kim, J., Thiru, P., Orkin, S.H., Lander, E.S. and Lodish, H.F. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc. Natl. Acad. Sci. USA 108 (2011) 1519-1524.
  • 54. Madanecki, P., Kapoor, N., Bebok, Z., Ochocka, R., Collawn, J.F. and Bartoszewski, R. Regulation of angiogenesis by hypoxia: the role of microRNA. Cell. Mol. Biol. Lett. DOI: 10.2478/s11658-012-0037-0, in press.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cfe9bba8-3e04-4c24-92ea-f672bd8df45e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.