PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 2 |

Tytuł artykułu

Metabolic shift from secondary metabolite production to induction of anti-oxidative enzymes during NaCl stress in Swertia chirata Bunch.-Ham.

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Swertia chirata Buch.-Ham. is an endangered medicinal plant having high medicinal value. Present study was envisaged to understand in vitro induction of marker secondary metabolites using NaCl elicitation. 50 and 100 mM of NaCl concentrations were applied on 1-monthold static culture shoots. Plants were assessed for cellular damage, anti-oxidative enzymatic system and production of secondary metabolites. There was significant (p ≤ 0.05) increase in secondary metabolites at 50 mM NaCl without any cellular damage or induction of anti-oxidative enzymes. Initial increase in metabolic content of secondary metabolites was observed during 100 mM NaCl treatment, which falls back to normal levels at the seventh day. There was concurrent induction of scavenging enzymes during this period. Results suggest channelling of different defence strategies in response to differential NaCl treatment. Biochemical relationship between induction of anti-oxidative enzymes and production of secondary metabolites has further been discussed in light of physiological requirements.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

2

Opis fizyczny

p.541-546,fig.,ref.

Twórcy

autor
  • Biodiversity and Applied Botany Division, Indian Institute of Integrative Medicine, Canal Road, 180001 Jammu, India
autor
  • Biodiversity and Applied Botany Division, Indian Institute of Integrative Medicine, Canal Road, 180001 Jammu, India
autor
  • Biodiversity and Applied Botany Division, Indian Institute of Integrative Medicine, Canal Road, 180001 Jammu, India

Bibliografia

  • Aghaei K, Ehsanpour AA, Komatsu SS (2009) Potato responds to salt stress by increased activity of antioxidant enzymes. J Int Plant Biol 51:1095–1103
  • Basnet B (2001) Evolving nursery practices and method of cultivation of high value medicinal plant Swertia chirata Ham. Environ Ecol 19:935–938
  • Caldentey KMO, Inze D (2004) Plant cell factories in the post genomic era: new ways to produce secondary metabolites. Trends Plant Sci 9:433–440
  • Chaparzadeh N, D’Amico ML, Nejad RAK, Izzo R, Izzo FN (2004) Antioxidative responses of Calendula offıcinalis under salinity conditions. Plant Physiol Biochem 42:695–701
  • Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant anti-herbivore defence. Science 230:895–899
  • Eraslan F, Inal A, Savasturk O, Gunes A (2007) Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci Hortic 114:5–10
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Herms DA, Matteson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–285
  • Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001) Antioxidant system and O₂⁻/H₂O₂ production in the apoplast of Pisum sativum L. leaves: its relation with NaCl-induced necrotic lesions in minor veins. Plant Physiol 127:817–831
  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154
  • Jaleel CA, Manivannan P, Lakshmanan GMA, Sridharan R, Panneerselvam R (2007) NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. CR Biol 330:806–813
  • Joshi P, Dhawan V (2005) Swertia chirayita—an overview. Curr Sci 89:635–640
  • Koul S, Suri KA, Dutt P, Sambyal M, Ahuja A, Kaul MK (2009) In vitro regeneration and marker glycoside assessment in Swertia chirata Buch.-Ham. In: Jain SM, Saxena PK (eds) Methods in molecular biology. Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Humana Press, USA, pp 139–153
  • Lattanzio V, Cardinali A, Ruta C, Fortunato IM, Lattanzio VMT, Linsalata V, Cicco N (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Env Exp Bot 65:54–62
  • Li Z, Liu Z (2003) Effect of NaCl on growth, morphology, and camptothecin accumulation in Camptotheca acuminata seedlings. Can J Plant Sci 83:931–938
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RL (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681
  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79
  • Orians CM, Ward D (2010) Evolution of plant defenses in non indigenous environment. Annu Rev Entomol 55:439–459
  • Rodrígues A, Cordoba A, Taleisnik E (2004) Decreased reactive oxygen species concentration in the elongation zone contributes to reduction in leaf growth in maize under salinity. J Exp Bot 55:1383–1390
  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228
  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5-dithiobis(2- nitrobenzoic acid). Anal Biochem 175:408–413
  • Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University Press, Ames Sood S, Vyas D, Nagar PK (2006) Physiological and biochemical studies during flower development in two rose species. Sci Hortic 108:390–396
  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55
  • Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875
  • Vyas D, Kumar S (2005) Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physiol Biochem 43:383–388
  • Vyas D, Kumar S, Ahuja PS (2007) Tea clones with shorter periods of winter dormancy exhibit lower accumulation of reactive oxygen species. Tree Physiol 27:1253–1259

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cf356fb6-4c1e-493b-b142-3a7542daba27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.