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Summary 

The purpose of this paper is to present some of the scientific achievements of Professor 
Wiktor Oktaba on inference in the Gauss-Markov and Zyskind-Martin models with missing 
observations and the transformation of these models. The Professor’s achievements include his 
works from the 1980s. The first section contains key information and symbols in the Gauss-
Markov and Zyskind-Martin models, taking into consideration missing observations. The next 
paragraph briefly presents the main research results on the prediction of the vector of missing 
observations in the general Gauss-Markov and Zyskind-Martin models. The third paragraph 
presents the results of the comparison of the actual model (the model with available observations) 
to the complete model (the model supplemented by predictors of missing observations). The 
following paragraph describes the results related to the properties of the predictors of missing 
observations. The last (fifth) paragraph presents the results of the Professor’s work on the 
invariant linearly sufficient transformations of the Gauss-Markov model. 
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1. Introduction and basic models and symbols 

In the final period of Professor Wiktor Oktaba’s professional activity before 
he decided to enjoy his fully deserved retirement we had the privilege to get 
acquainted with the research topics in the scope of his and his colleagues’ 
interest and to carry out the research alongside the Professor. The Professor 
presented us tables which demonstrated amazingly clearly some issues in 
mathematical statistics which are still part of unexplored areas of modern linear 
models. As young researchers working under his experienced eye it was our task 
to generalize some results, published in the subject literature. Our collaboration 
with the Professor began in this way. His experience, orderliness and 
perseverance in the pursuit of his goals resulted in our finding of solutions to 
some of the problems, which gave us an opportunity to learn about his working 
techniques as well as his kindness and firmness. 

For the purpose of presenting the scientific achievements of Professor 
Oktaba this chapter will deal with an introduction of basic symbols and concept 
of models crucial for further discussion. The general Gauss-Markov model is 
understood as a linear model: 

 eXy +β= , (1.1) 

where y is a random vector of the n observation with the expected value 

Xβ  and covariance matrix V2σ . It is assumed here that the matrix X (with n � 

p dimensions) is known, the vector of parameterβ  is unknown, 2σ signifies an 

unknown scalar, and V  any singular or non-singular known matrix. Model 

(1.1) is symbolised by the ( )VXβy 2,, σ  and denoted by GM.  
According to the unified theory of the least squares method (Rao 1973) in 

the GM model the special matrix T as 'XBXVT +=  is analysed, where 
'BB =  is such that the following condition is satisfied: 

 )()( TXV RR =M , (1.2) 

where R(A) denotes the linear space spanned by the columns of a matrix A. This 
equality is equivalent to the set of conditions: 
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where r(A) denotes the rank of matrix A. 
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Moreover, if in the GM model the following condition is satisfied 

 )()( VX RR ⊂ , (1.3) 

then this GM model is called the Zyskind-Martin model and is denoted by ZM. 
In the literature on the subject also ZM is called a model with trivial 
deterministic part or a weakly singular linear model. 

The GM and ZM models are a generalization of the standard model (where 
IV =  is the identity matrix)) and of the Aitken model (where V  is a non-

singular matrix; Aitken, 1934, Oktaba, 1982,a,b). In the cited works of the 
Professor, some examples illustrating the reasons for the appearance of 
singularity of covariance matrix V  can be found.  

Any matrix −A  satisfying the condition AAAA =−  is called a g-inverse 
of the matrix A. The matrix A+ satisfying the following four condition: 

AAAA =+ , +++ = AAAA , ( ) ++ = AAAA
'

, ( ) AAAA ++ ='
 is unique and 

is called the Moore-Penrose inverse matrix of A.  
ZM model with the (1.3) condition appeared in the Zyskind and Martin 

paper (1969) in which the authors were the first who had generalized the Gauss-
Markov theorem to include the case of the model with singular covariance 
matrix. They noted that in the GM model with some of the constraints 
concerning estimable functions, solutions to the set of equations 

yXβVX ++ ′ = ′ VX  do not lead to BLUE's of estimable functions. They also 
proved that in the GM model in the class of all g-inverses of the dispersion 

matrix V there is a nonempty subclass ϑ such that for any ∗V ∈ ϑ  a solution 
∗β̂  of normal equations  

 yVXXβVX ∗∗ ′ = ′   (1.4) 

 leads to the BLUE of any estimable linear function βλ′ , which takes the 

form ∗′βλ ˆ . Moreover, every g-inverses −V  (also V+) belongs to ϑ  if and only 
if condition (1.3) is fulfilled (Zyskind, Martin 1969, Oktaba 1982b).  

 The form (1.4) is simple and similar to that in the Aitken model 

( yVXXβVX 1 1−− ′=′ , where V  is a non-singular matrix) and to that in the 

standard model ( yXXβX ′=′ , where IV = ) and also to that in the GM model 

(in the general case yTXXβTX −− ′ = ′ , where V  is a singular matrix, 

'XBXVT +=  and the condition (1.2) is fulfilled; Rao 1973). 
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Also, for testable linear hypotheses 0φLβ = , in order for the quadratic 

form for the hypothesis included in the numerator of the fraction in the test 
function F to be as in the standard model the difference of the sum of squares for 
errors: 

 
( ) ( )( )( ) ( )

( ) ( ) ( ) ( )XβyMβyXβyMXβy

φβLLBMXXLφβL

βφLβ

00

0

−′−−−′−=

=−′−′−

=

−−

Xminmin

ˆˆ '

 (1.5) 

for given M , the assumption (1.3) is necessary and sufficient (i.e., ZM) for 
−= VM  (Rao 1972, 1973). Note that the equation (1.5) is a generalization of 

the Pythagorean theorem. 

2. Prediction of missing observations in the general Gauss-Markov model 

It is held that an error or loss of data means that the orthogonal model of the 
planned number of observations becomes a model with missing observations. 

Therefore in the GM model a partitioned vector y as 







=

2

1

y

y
y  is introduced, 

where 1y  is the vector of m missing observations and 2y  is the vector of (n-m) 
available observations. This assumption on the observation vector y does not 
reduce the generality of considerations. This follows directly from the properties 
for these transformations discussed in Chapter 5, which can be a permutation of 
the observations. The model: 

 ),,( 2
2

22 VβXy σ  (2.1) 

containing exclusively the observations available is then called actual 
model and denoted by GMa 

Fisher (1960) proved that when Iy 2)( σ=Cov  the best linear predictor of 
missing observations is the predictor that minimises the sum of squares for 

error: )ˆ()'ˆ(, βXyβXyIe −−=SS to the vector of missing observations1y , 

where β̂  is the estimator of the parameter β  obtained from normal equations 

yXXβX ′=′ . The Professor using the unified theory of the least squares 
method generalized this result on the Aitken and ZM models as well as on the 
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general Gauss-Markov model GM (Oktaba, Jagiełło 1982, Oktaba et al. 1983, 
Oktaba et al. 1986). The main result is presented below: 

Theorem 2.1  
In the GM model (in the form of( )VXβy 2,, σ , where V  is any singular or non-

singular known matrix, for matrices 'XBXVT +=  and 'BB =  the condition 

(1.2) is fulfilled and β̂  is the solution of normal equations yTXXTX −− ′ = β′  
), the predictor of the vector of missing observations obtained by minimising 

the sum of squares for the error )ˆ()'ˆ(
,

βXyTβXy
Te

−−= −
−SS  to the vector 

1y  is as follows: 

 2232111 )'()'(ˆ ZyyEEEEy =++−= −  (2.2) 

with the following conditions: 























=−

+∈+

∈








−−−−

43

21

11232

2

1

))((

where

),'()'(

)(
ˆ

EE

EE
TX'XTX'XIT

EEyEE

T
y

y

R

R

 (2.3) 

and the dimensions of the matrices 4321 ,,, EEEE  are respectively m×m, m×(n-

m), (n-m)×m, (n-m)× (n-m). 
Theorem 2.1 is a generalization of the results of Yates (1933), Fisher 

(1960), Oktaba and Jagiełło (1982) for standard ( )IV =  and non-standard 

Aitken’s ( )0≠V  models. 

3. Actual and complete models 

As well as the actual model, the complete model is also considered, where 
instead of the vector missing observations its predictor (2.2) is used. In view of 
(2.2) the complemented model is as follows: 
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and is denoted by GMc (or ZMc respectively). The Professor Oktaba in his 
works (Oktaba et al. 1983, Oktaba et al. 1986) proved the following results: 

Theorem 3.1 
a) If the actual model (2.1) is a ZM model then the complete model (3.1) is 

also ZM; 
b) Quadratic forms:  
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in the actual (2.1) and complete models (3.1) are equal; 
c) The solutions of normal equations in the actual and complete ZM 

models are identical; 
d)  The sums of squares for error in the actual and complete ZM models are 

the same. 
Result (d) is a generalization of Fisher's rule (1960). 

4. Properties of predictors of missing observations  in the general Gauss-
Markov model 

Another area of interest for the Professor was the research on the properties 
of predictors of missing observations. He studied the GMd and ZMd models with 

a diagonal covariance matrix 







=

2

1

,

,

V0

0V
V , i.e. the models in which the 

available observations are uncorrelated with the missing observations.  
The predictor 21ˆ Hyy =  is called the UBLUP (uniformly best linear 

unbiased predictor) for 1y  if for an arbitrary but fixed β  is 

βXyy 111 )()ˆ( == EE  and one of the equivalent conditions is satisfied: 

( ) ( )( )111111~
ˆcov~cov)ˆ()~(

211

yyyyyy −≥−⇒=∀
=

EE
yHy
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( ) ( )( ))ˆ'var()~'var()()~( 111111~
211

yywyywyy −≥−⇒=∀∀
=

EE
yHyw

 

(Rao 1973, Silvey 1970). 
In his work (Oktaba et al. 1985a) the Professor proved the following: 

Theorem 4.1 
In the GMd model, the predictor 21ˆ Hyy =  is the UBLUP for 1y  if and only if 

when for an arbitrary but fixed β  is βXyy 111 )()ˆ( == EE  and one of the 
equivalent conditions is satisfied: 

 ( ))ˆ'var()~'var()ˆ()~( 1111~
21

ywywyy ≥⇒=∀∀
=

EE
yHyw

 or (4.1) 

 ( )0'')ˆ()~( 212111~
211

≥−⇒=∀
=

HHVHVHyy EE
yHy

. (4.2) 

Theorem 4.2 
In the ZMd model some predictors 1ŷ  of missing observations1y  have the 
simple form: 

 22222211 ')'(~ yVXXVXXy −−−=  (4.3) 

They are invariant due to the choice of g-inverse 
−

2V matrix. 

The subclass of predictors as defined in (4.3) is denoted Ψ . It is not 

difficult to observe that the predictors Ψ  are of the form βXy ˆ~
11 = , where β̂  

is a solution of normal equations in the actual ZMd model. 

Theorem 4.3 
If in the ZMd model the following condition is satisfied:  

 )'()'( 21 XX RR ⊂ , (4.4) 

then the predictors of y1 vector from Ψ class are UBLUP. 

Theorem 4.4 
In the ZMd model  
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 when 0≠V   and  X2 is of full column rank (4.5) 

the sole predictor 1ŷ  is UBLUP. 

Conclusion 4.1 
In the standard model ( )IXβy 2,, σ  the predictor 1ŷ  has the form: 

 222211 ')'(ˆ yXXXXy −=  (4.6)  

If in addition )'()'( 21 XX RR ⊂ or pr =)( 2X then the 1ŷ  predictor is 
UBLUP. 

Theorem 4.5 (General form of UBLUP for y1 in the GMd model) 
In the GMd model 21ˆ Hyy =  is UBLUP for the vector 1y  of missing 
observations if and only if: 

 22112121 ˆ)'()'( yXXyXXXX −− ==∧⊂ i.e.HRR  (4.7) 

 and )0'0'( 2212 =⇒=∀∀ − zVXXwXz
wz

. (4.8) 

Observe that the condition (4.8) can equivalently be expressed as  

 ( ) ( )22 XHV RR ⊂′ ,  (4.9) 

where the matrix H is defined in (4.7). 

5. Invariant linearly sufficient transformations of  the general Gauss-
Markov model 

Apart from the GM model( )VXβy 2,, σ  let us study the transformed PGM 
model of the form: 
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 )',,( 2PVPPXβPy σ  (5.1) 

The question asked was as follows: Under which conditions on the 
transformation P in the GM and PGM models are there equal values of statistics 
related to the estimation and testing of the hypotheses in the linear model, 
namely: quadratic forms, sums of squares for error, the estimators of parametric 

functions βλ '  and of parameter 2σ and test functions to verify the linear 
hypothesis? The answers to this question can be found in the Professor’s works 
(Oktaba et al. 1984, Oktaba et al. 1988). The main results are presented below: 

Theorem 5.1 
If the linear transformation P meets one of the conditions: 

 )'()()'()( PXTPT RRRR ⊂∧= , (5.2) 

 )'()()'()( PXTPT RRrr ⊂∧= , (5.3) 

 )'()( PT RR ⊂ , (5.4) 

then the following values in models GM and PGM are equal: 
a) quadratic forms: 

  )()'()'()()'( PXβPyPTPPXβPyXβyTXβy −−−− −− and ;  (5.5) 

b) solutions of the normal equations; 
c) conditions for estimability of parametric functions βλ ' ; 

d) values of BLUEs for parametric functions βλ ' ; 

e) estimators of parameter 2σ ; 
f) conditions for the consistency of the linear hypothesis 0φLβ =  

g) test functions to test the linear hypothesis 0φLβ =  

It should be noted that the conditions (5.2) and (5.3) are equivalent and 
(5.4) implies (5.2). 

Transformations such as those described in Theorem 5.1 are called invariant 
linearly sufficient statistics and denoted as ILS (Oktaba et al. 1988). They retain 
the information needed for linear and quadratic estimation and testing in the 
linear model. They generalize the concept of linearly sufficient statistics 
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(Baksalary and Kala 1981; Drygas 1983), which retain only the information 
needed for linear estimation  

Specific forms of ILS appear in the problems related to the prediction of 

missing observations. These are for example: 







=

I

Z
P  transformation, which 

led from the actual to the complete model, permutations of observations or 
compositions of these transformations. Hence the next step in the research 
became tackling the issue of the reduction of missing observations freely placed 
in the multivariate models. 

It should be noted that this presentation of the Professor’s works on the 
Gauss-Markov and Zyskind-Martin models deals with the only part of his 
achievements in this field. Much of his works on projection operators and 
estimation and hypothesis testing in multivariate Gauss-Markov and Zyskind-
Martin models has been published in national and international journals after his 
retirement (Oktaba 1998, 2002). Some of the Professor’s results used in this 
paper have been and still are quoted in world literature on the subject (e.g. in the 
international Encyclopedia of Statistical Sciences: Kotz et al. 1988; Alexander, 
Chandrasekar 2005; Stepniak 2005). They have also been used by the authors of 
this paper in their works, e.g. on multivariate models and the application of the 
transformation of nonlinear models (Kornacki 2007, Wawrzosek 2009). 
Numerous text books written by the Professor are still quoted in various 
publications. 
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