Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 07 |
Tytuł artykułu

Kinetics of mercury uptake by oilseed rape and white lupin: influence of Mn and Cu

Warianty tytułu
Języki publikacji
Mercury influx in oilseed rape and white lupin was studied using short time influx experiments. The effect of Cu and Mn in Hg influx was also tested. Plants were grown for 2 weeks and then roots were incubated with increasing Hg concentrations (0–50 μM HgCl2), both at 20 ºC and ice-cold temperature. An active, saturable component in Hg uptake was found in oilseed rape and white lupin, with Km and Vmax values in the range of low affinity transporters for essential micronutrients. A reduction in Hg uptake was observed in the presence of Mn for oilseed rape, suggesting that Hg influx is mediated by a Mn transporter. No effects of Cu on Hg influx were observed for any of the two plant species, suggesting a different transport system for Hg and Cu in roots of oilseed rape and white lupin.
Słowa kluczowe
Opis fizyczny
  • Dpto de Quı´mica Agrı´cola (M-10), Facultad de Ciencias, Universidad Auto´noma de Madrid, C/Francisco Toma´s y Valiente, 7, 28049 Madrid, Spain
  • Dpto de Quı´mica Agrı´cola (M-10), Facultad de Ciencias, Universidad Auto´noma de Madrid, C/Francisco Toma´s y Valiente, 7, 28049 Madrid, Spain
  • Dpto de Quı´mica Agrı´cola (M-10), Facultad de Ciencias, Universidad Auto´noma de Madrid, C/Francisco Toma´s y Valiente, 7, 28049 Madrid, Spain
  • Dpto de Quı´mica Agrı´cola (M-10), Facultad de Ciencias, Universidad Auto´noma de Madrid, C/Francisco Toma´s y Valiente, 7, 28049 Madrid, Spain
  • Allnutt F, Bonner W (1987) Evolution of reductive release as mechanism for iron uptake from ferrioxamine B by Chlorella vulgaris. Plant Physiol 85:751–756
  • Beauford W, Barber J, Barringer AJ (1977) Uptake and distribution of mercury within higher plants. Plant Physiol 39:261–265
  • Bowen JE (1987) Physiology of genotypic differences in zinc and copper uptake in rice and tomato. Plant Soil 99:115–125
  • Bravin MN, Merrer BL, Denaix L, Schneider A, Hinsinger P (2010) Copper uptake kinetics in hydroponically-grown durum wheat (Triticum turgidum durum L.) as compared with soil’s ability to supply copper. Plant Soil 331:91–104
  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816
  • Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) Highaffinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917
  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848
  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9
  • Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of irondeficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116:1063–1072
  • Costa C, Morel JL (1993) Cadmium uptake by Lupinus albus L.: cadmium excretion, a possible mechanism of cadmium tolerance. J Plant Nutr 16:1921–1929
  • Du X, Zhu YG, Liu WJ, Zhao XS (2005) Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environ Exp Bot 54:1–7
  • Esteban E, Carpena RO, Meharg AA (2003) High-affinity phosphate/arsenate transport in white lupin (Lupinus albus) is relatively insensitive to phosphate status. New Phytol 158:165–173
  • Esteban E, Moreno E, Pen˜alosa J, Cabrero J, Millan R, Zornoza P (2008) Short and long-term uptake of Hg in white lupin plants: kinetics and stress indicators. Environ Exp Bot 62:316–322
  • Greger M, Wang Y, Neuschu¨tz C (2005) Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environ Pollut 134:201–208
  • Gustafsson JP (2012) Visual MINTEQ Version 3.0 Kungl Tekniska Hogskolan (KTH), Division of Land Water Resources, 2012; updated June 13, 2012 (
  • Hacisalihoglu G, Hart JJ, Kochian LV (2001) High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol 125:456–463
  • Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in the Almadén mining district, Spain. J Geochem Explor 80:95–104
  • Kabata-Pendias A, Pendias H (2000) Trace elements in soils and plants. CRC Press, Florida
  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44
  • Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi. Plant Physiol 112:1715–1722
  • Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60
  • Maas E, Moore D, Mason B (1967) Manganese absorption by excised barley roots. Plant Physiol 43:527–530
  • Meharg AA, Macnair MR (1994) Phosphorus nutrition of arsenatetolerant and nontolerant phenotypes of velvetgrass. J Environ Qual 23:234–238
  • Nowack B, Mayer KU, Oswald SE, van Beinum W, Appelo CAJ, Jacques D, Seuntjens P, Gerard F, Jaillard B, Schnepf A, Roose T (2006) Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285:305–321
  • Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251
  • Pandey PK, Singh SP (1993) Hg2+ uptake in a Cyanobacterium. Curr Microbiol 26:155–159
  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422
  • Pedas P, Hebbern CA, Schjoerring JK, Holm PE, Husted S (2005) Differential capacity for high-affinity manganese uptake contributes to differences between barley genotypes in tolerance to low manganese availability. Plant Physiol 139:1411–1420
  • Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT11[OA]. Plant Physiol 148:455–466
  • Reid RJ, Brookes JD, Tester MA, Smith FA (1996) The mechanism of zinc uptake in plants. Planta 198:39–45
  • Rodriguez L, Rincón J, Asencio I, Rodrıguez-Castellanos L (2007) Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytorremediation perspectives. Int J Phytorem 9:1–13
  • Sierra MJ, Milla´n R, Esteban E, Cardona AI, Schmid T (2008) Evaluation of mercury uptake and distribution in Vicia sativa L. applying two different study scales: greenhouse conditions and lysimeter experiments. J Geochem Exp 96:203–209
  • Suszcynsky EM, Shann JR (1995) Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes. Environ Toxicol Chem 14:61–67
  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. doi:10.1155/2011/939161
  • Zhao FJ, Hamon RE, Lombi E, MaLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543
  • Zornoza P, Sánchez Pardo B, Carpena RO (2010) Interaction and accumulation of manganese and cadmium in the manganese accumulator Lupinus albus. J Plant Physiol 167:1027–1032
rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.