PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 3 |

Tytuł artykułu

Bioaccumulation of Na, Mg, Ca, K, and P in fish larvae of the genus Atherina L. collected in three bays in the region of Sevastopol

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The monitoring of pollution in bodies of water is an important part of both environmental protection policy and natural resources management policy. The use of larvae and young fish in the evaluation of the toxicity of the water environment is a more sensitive index compared to the bioindication methods using adult organisms. The aim of the research was to assess the content of Na, Mg, Ca, K, and P in water and in fish larvae of the genus Atherina L., caught in three Sevastopol bays. The research was carried out in 2012 in three Sevastopol bays: Golubaja, Omega, and Karantinna. The larvae were caught with a fishing net in July 2012, in shallow coastal waters at a depth up to 1 m. Water samples were also collected from the same locations. The concentration of the studied elements in the samples was determined by inductively coupled plasma atomic emission spectrometry. The content of magnesium and calcium was higher in the water collected from Golubaja Bay than in the other sample collection sites, whereas water from Karantinna Bay was found to have the most phosphorus. The concentration of the studied elements in the larvae of Atherina L had the following order, starting from the greatest: P>K>Na>Ca>Mg. The sodium content ranged between 7.081 and 19.06 g ·kg-1, magnesium between 1.033 and 2.79 g · kg-1 potassium between 14.41 and 34.80 g · kg-1, calcium between 2.043 and 4.9671 g ·kg-1, whereas phosphorus was between 15.23 and 44.73 g · kg-1. The highest content of all the studied elements, except for calcium and phosphorus, was found in the organisms caught in Golubaja Bay, whereas the lowest accumulation of these elements, except for phosphorus, was observed in larvae caught in Karantinna Bay which is located in the area with the highest anthropogenic impact. The decreased content of macronutrients in fish, particularly in their early developmental stages, may be the result of the toxic effect of pollutants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

3

Opis fizyczny

p.769-779,fig.,ref.

Twórcy

autor
  • Chair of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
autor
  • Department of Ichthyology, Institute of Biology Southern Seas, Ukraine
autor
  • Chair of Agrotechnology and Agricultural Ecology, University of Agriculture in Krakow Krakow, Poland

Bibliografia

  • Arambourou H., Beisel J-N., Branchu P., Debat V. 2014. Exposure to sediments from polluted rivers has limited phenotypic effects on larvae and adults of Chironomusriparius. Sci. Total Environ., 484(15): 92-101. DOI: 10.1016/j.scitotenv.2014.03.010
  • Bervoets L., Van Campenhout K., Reynders H., Knapen D., Covacia A., Blust R. 2009. Bioaccumulation of micropollutants and biomarker responses in caged carp (Cyprinuscarpio). Ecotoxicol. Environ Safe., 72: 720-728. DOI: 10.1016/j.ecoenv.2008.10.008
  • Brito G.B., de Souza T.L., Bressy F.C., Moura C.W.N., Korn M.G.A. 2012. Levels and spatial distribution of trace elements in macroalgae species from the Todos of Santos Bay, Bahia, Brazil. Mar. Pollut. Bull., 64(10): 2238-2244. DOI: 10.1016/j.marpolbul.2012.06.022
  • Castro-González M.I., Méndez-Armenta M. 2008. Heavy metals: Implications associated to fish consumption. Environ. Toxicol. Phar., 26(3): 263-271. DOI: 10.1016/j.etap.2008.06.001
  • Culkin F., Cox R.A. 1966. Sodium, potassium, magnesium, calcium and strontium in seawater. Deep-Sea Res., 13: 789-804.
  • Eddy F.B. 1985. Uptake and loss of potassium by rainbow trout (Salmogairdneri). J. Exp. Biol., 118: 277-286.
  • Fisher C., Bodinier C., Kuhl A., Greek C. 2013. Effects of potassium ion supplementation on survival and ion regulation in Gulf killifish Fundulus grandis larvae reared in ion deficient saline waters. Comp. Biochem. Physiol.A Mol. Integr. Physiol., 164(4): 572-578. DOI: 10.1016/j.cbpa.2013.01.002
  • Gopalakrishnan S., Thilagam H., Raja P.V. 2008. Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroideselegans.
  • Chemosphere, 71: 515-528. DOI: 10.1016/j.chemosphere.2007.09.062
  • Gordina A.D. Pavlova E.V., Ovsyany E.I., Wilsons J.G., Kemp R.B., Romanov A.S. 2001. Longterm changes in Sevastopol Bay (the Black Sea) with particular reference to the ichthyoplankton and zooplankton. Estuar. Coast. Shelf S., 20(52): 1-13. DOI: 10.1006/ecss.2000.0662
  • Hallare A.V., Schirling M., Luckenbach T., Köhler H.R., Triebskorn R. 2005. Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J. Therm. Biol., 30: 7-17. DOI: 10.1016/j.jtherbio. 2004.06.002/
  • Hamre K., Srivastava A., Ronnestad I., Mangor-Jensen A., Stoss J. 2008. Several micronutrients in the rotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae. Aquacult. Nutr., 14(1): 51-60. DOI: 10.1111/j.1365-2095.2007.00504.x
  • Hossain M.A., Furuichi M. 2000. Essentiality of dietary calcium supplement in fingerling scorpion fish (Sebastiscus marmoratus). Aquaculture, 189(1-2): 155-163. DOI: 10.1016/ S0044-8486(00)00366-5
  • Jeon J., Lim H.K, Kannan K., Sang Don Kim S.D. 2010. Effect of perfluorooctanesulfonate on osmoregulation in marine fish, Sebastes schlegeli, under different salinities. Chemosphere, 81(2): 228-234. DOI: 10.1016/j.chemosphere.2010.06.037
  • Kienle C., Köhler H.R., Filser J., Gerhardt A. 2008. Effects of nickel chloride and oxygen depletion on behaviour and vitality of zebrafish (Danio rerio, Hamilton, 1822) (Pisces, Cypriniformes) embryos and larvae. Environ. Pollut., 152: 612-620. DOI:10.1016/j. envpol.2007.06.069Kong X., Jiang H., Wang S., Wu X., Fei W., Li L., Nie G., Li X. 2013. Effects of copper exposure on the hatching status and antioxidant defense at different developmental stages of embryos and larvae of goldfish Carassius auratus. Chemosphere, 92(11): 1458-1464. DOI: 10.1016/j. chemosphere.2013.04.004
  • Kuzminova N., Dorokhova I., Rudneva I. 2014. Age- dependent changes of Mediterranean Trachurus mediterraneus male and female from coastal waters of Sevastopol (Black Sea, Ukraine). Turk. J. Fish Aquat. Sc., 14: 183-192. DOI: 10.4194/1303-2712-v14_1_20
  • Lall S.P, Lewis-McCrea L.M. 2007. Role of nutrients in skeletal metabolism and pathology in fish – An overview. Aquaculture, 267(1-4): 3-19. DOI: 10.1016/j.aquaculture.2007.02.053
  • McKinley A.C., Miskiewicz A., Taylor M.D., Johnston E.L. 2011. Strong links between metal contamination, habitat modification and estuarine larval fish distributions. Environ. Pollut., 159(6): 1499-1509. DOI: 10.1016/j.envpol.2011.03.008
  • Meinelt T., Playle R.C., Pietrock M., Burnison B.K., Wienke A., Steinberg C.E.W. 2001. Interaction of cadmium toxicity in embryos and larvae of zebrafish (Danio rerio) with calcium and humic substances. Aquat. Toxicol., 54(3-4): 205-215. DOI: 10.1016/S0166- 445X(01)00145-X
  • Moeller A., MacNeil S.D., Richard F., Amb rowe R., Shane S., Que Hee S.S. 2003. Elements in fish of Malibu Creek and Malibu Lagoon near Los Angeles, California. Mar. Pollut. Bull., 46(4): 424-429. DOI: 10.1016/S0025-326X(02)00466-6
  • Pavlova E.V., Murina V.V., Kemp R. B., Wilson J.G., Parchevsky V.P. 2007. Annual dynamics odabudance biomass and survival of meroplankton in Sewastopol Bay, Black Sea. Morskij Ecol. J., 2: 63-77.
  • Sánchez-Rodríguez I., Huerta-Diaz M.A., Choumiline E., Holguín-Quiñones O., Zertuche- -González J.A. 2001. Elemental concentrations in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue. Environ. Pollut., 114(2): 145-160. DOI: 10.1016/S0269-7491(00)00223-2
  • Sathya V., Ramesh M., Poopal R.K., Dinesh B. 2012. Acute and sublethal effects in an Indian major carp Cirrhinus mrigala exposed to silver nitrate: Gill Na+/K+-ATPase, plasma electrolytes and biochemical alterations. Fish Shellfish Immun., 32(5): 862-868. DOI: 10.1016/j. fsi.2012.02.014
  • Tellis M.S., Lauer M.M., Nadella S., Bianchini A., Wood C.M. 2013. Ionic status, calcium uptake, and Ca2+-ATPase activity during early development in the purple sea urchin (Strongylocentrotus purpuratus). Comp. Biochem. Physiol.A Mol. Integr. Physiol., 166(2): 272-277. DOI: 10.1016/j.cbpa.2013.05.028
  • Varsamos S., Nebel C., Charmantier G. 2005. Ontogeny of osmoregulation in postembryonic fish: A review. Comp. Biochem. Phys., 141: 401-429. DOI: 10.1016/j.cbpb.2005.01.013
  • Walther K., Sartoris F.J., Portner H. 2011. Impacts of temperature and acidification on larval calcium incorporation of the spider crab Hyasaraneus from different latitudes (54 degrees vs. 79 degrees N). Mar. Biol., 158: 2043-2053. DOI: 10.1007/S00227-011-1711-x
  • Weng N., Wang WX. 2013. Improved tolerance of metals in contaminated oyster larvae. Aqua. Toxicol., 146: 61-69. DOI: 10.1016/j.aquatox.2013.10.036
  • Woodcock S.H., Munro A.R. Crook D.A., Gillanders B.M. 2012. Incorporation of magnesium into fish otoliths: Determining contribution from water and diet. Geochim.Cosmochim. Acta, 94: 12-21. DOI: 10.1016/j.gca.2012.07.003
  • Zhou J., Caia Z-H., Xing K-Z. 2011. Potential mechanisms of phthalate ester embryotoxicity in the abalone Haliotis diversicolor supertexta. Environ. Pollut., 159(5): 1114-1122. DOI: 10.1016/j.envpol.2011.02.016

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cd003e87-fa0d-4886-909b-668524b96e1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.