PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 14 | 2 |

Tytuł artykułu

Assessment of quality attributes of endive (Cichorium endivia L.) depending on a cultivar and growing conditions

Treść / Zawartość

Warianty tytułu

PL
Wpływ odmiany i warunków uprawy na cechy jakościowe endywii (Cichorum endivia L.)

Języki publikacji

EN

Abstrakty

EN
Endive plants were hydroponically grown in greenhouse control conditions. The aim of this investigation was to assess the biological quality of endive cultivated in three different growing media. Organic media: coconut fiber and wood fiber, were compared to rockwool, commonly used as a standard horticultural medium in greenhouse vegetable production. Three crispum leaf endive cultivars: ‘Galanti’, ‘Perceval’ and ‘Barundi’ and one latifolium leaf cultivar (escarole chicory): ‘Kethel’ were examined during the spring time. At about 10 days before harvest the plants were covered with low tunnel made from double-sided black and white foil to bleach the leaves and at 5–7 days before the end of the experiment nutrient solution was replaced by water to reduce the nitrate concentration in the leaves of endive. The content of dry matter, ascorbic acid, total soluble solids (TSS), total sugars (TS), phenolic acids and nitrates (NO3), P, K and Ca was determined in leaves of both bleached and not bleached plants. Also the antioxidant activity was measured by two assays DPPH and FRAP. The effect of cultivation substrate, cultivar, and bleaching treatment on the quality of endive appeared diversed. The unbleached endive showed a higher content of dry mass, higher concentrations of sugars, TSS, potassium, and calcium than the bleached plants. The bleached plants had significantly lower fresh mass of plants (by 33% in average), but in turn were characterized by higher concentrations of phosphorus and polyphenolic acids. Plants cultivated on wood fiber contained the smallest amount of nitrates, comparing to plants grown either on rockwool or coconut fiber. None of the investigated plants contained more nitrates than the acceptable level of nitrates for lettuce grown under cover. The antioxidant activity of endive plants measured by FRAP method was higher in not bleached endive plants than in the bleached ones. The antioxidant impact of endive plants expressed as DPPH was not reduced in response to bleaching. The highest antioxidant activity was observed in plants of ‘Kethel’.
PL
Rośliny endywii uprawiano hydroponicznie w kontrolowanych warunkach szklarniowych. Celem badań była ocena jakości biologicznej endywii uprawianej na trzech różnych podłożach. Porównywano podłoża organiczne – włókno kokosowe i drzewne – z wełną mineralną, podłożem powszechnie stosowanym w uprawie warzyw pod osłonami. Uprawiano, w terminie wiosennym, trzy odmiany endywii o kędzierzawych liściach: Galanti, Perceval i Barundi oraz jedną o liściach całobrzegich (escariola) – Kethel. Na około 10 dni przed zbiorem rośliny zastały przykryte dwustronną czarno-białą folią w celu bielenia liści, a na 5–7 dni przed końcem doświadczenia pożywkę do fertygacji zastąpiono wodą, aby zmniejszyć stężenie azotanów w liściach. Po zbiorze w roślinach bielonych i niebielonych badano zawartość suchej masy, kwasu askorbinowego, składników rozpuszczalnych w soku komórkowym (SRSK) oraz cukrów ogółem, kwasów fenolowych, azotanów (NO3), P, K i Ca. Aktywność antyoksydacyjną endywii mierzono metodami DPPH i FRAP. Stwierdzono zróżnicowany wpływ podłoża, odmiany i zabiegu bielenia na jakość endywii. Niebielona endywia miała większą zawartość suchej masy, cukrów, składników rozpuszczalnych w soku komórkowym (SRSK), potasu i wapnia niż rośliny po bieleniu. Rośliny po bieleniu osiągały niższą świeżą masę (średnio o 33%), ale z kolei zawierały więcej fosforu i kwasów polifenolowych. Rośliny uprawiane na podłożu z włókna drzewnego zawierały najmniejszą ilość azotanów w porównaniu z roślinami uprawianymi w matach z wełny mineralnej czy włókna kokosowego. Żadne z badanych roślin nie zawierały więcej azotanów niż wynosi dopuszczalny poziom azotanów w liściach sałaty z uprawy pod osłonami. Silniejsze właściwości antyoksydacyjne, mierzone metodą FRAP, stwierdzono u roślin endywii niepoddanych bieleniu niż bielonych. W przypadku metody DPPH nie stwierdzono istotnego zmniejszenia przeciwutleniających właściwości roślin endywii w wyniku zabiegu bielenia. Największą aktywność antyoksydacyjną stwierdzono u roślin odmiany ‘Kethel’.

Wydawca

-

Rocznik

Tom

14

Numer

2

Opis fizyczny

p.13-26,fig.,ref.

Twórcy

autor
  • Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences, 159 Nowoursynowska, 02-776 Warsaw, Poland
  • Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences, 159 Nowoursynowska, 02-776 Warsaw, Poland
  • Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences, 159 Nowoursynowska, 02-776 Warsaw, Poland
  • Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences, 159 Nowoursynowska, 02-776 Warsaw, Poland

Bibliografia

  • Adamczewska-Sowińska, K., Miłowana Uklańska, C. (2010). The effect of form and dose of nitrogen fertilizer on yielding and biological value of endive. Acta Sci. Pol. Hortorum Cultus, 9(2), 85–91.
  • Amin, I., Zamaliah, M.M., Chin, W.F. (2004). Total antioxidant activity and phenolic content in selected vegetables. Food Chem., 87, 581–586.
  • Aherne, S.A., O’Brien, N.M. (2002). Dietary flavonols: chemistry, food content, and metabolism. Nnutrition, 18, 75–81.
  • Amr, A., Hadidi, N. (2001). Effect of cultivar and harvest date of nitrite content of selected vegatables grown under open field and greenhouse conditions in Jordan. J. Food Compos. Anal., 14, 59–67.
  • Barton, H., Fołta, M,. Zachwieja, Z. (2005). Application of FRAP, ABTS and DPPH methods to estimation of antioxidant activity of food products. Nowiny Lek., 74, 510–513.
  • Bazzaro, L.A., He, J., Ogden, L.G., Loria, C.M., Vapputuri, S., Myers, L. (2002). Fruit and vegetable intake and risk of cardiovascular disease in US adults: The first national health and nutrition examination survey epidemiologic follow-up study. Am. J. Clin. Nutr., 76, 93–99.
  • Becker, Ch., Kläring, H.P., Kroh, L.W., Krumbein, A. (2013). Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce. Plant Physiol. Biochem., 72, 154e160.
  • Benzie, I.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239, 70–76.
  • Benzie, I. F., Strain, J.J. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth. Enzymol., 299, 15–27.
  • Blom-Zandstra, M. (2008). Nitrate accumulation in vegetables and its relationship to quality. Ann. Appl. Biol., 115(3), 553–561.
  • Drzazga, B. (1974). Analiza techniczna w przetwórstwie owoców i warzyw. WSiP, pp. 277. DuPont, M.S., Mondin, Z., Williamson, G., Price, K.R. (2000). Effect of variety, processing and storage on the flavonoid glycoside content and composition of lettuce and endive. J. Agr. Food Chem., 48, 3957–3964.
  • Fan, X., Sokorai, K.J.B. (2005). Assessment of radiation sensitivity of fresh-cut vegetables using electrolyte leakage measurement. Postharv. Biol. Tech., 36, 191–197.
  • Gruda, N. (2005). Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit. Rev. Plant Sci., 24, 227–247.
  • Ho, C.-T. (1992). Phenolic compounds in food: An overview. In: ACS symposium ser. 507. Phenolic compounds in food and their effects on health II: Antioxidants and cancer prevention,. Huang, M.-T, Ho, C.-T., Lee, C.Y. (eds.), Washington, DC, Am. Chem. Soc., 2–7.
  • Isabelle, M., Lee, B.L., Lim, M.T., Koh, W.P., Huang, D., Ong, C.N., 2010. Antioxidant activity and profiles of common vegetables in Singapore. Food Chem., 120, 993–1003.
  • Kalt, W., Ryan, D.A., Duy, J.C., Prior, R.L., Ehlenfeldt, M.K., Vander Kloet, S.P. (2001). Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush bluberries (Vaccinium Section cyanococcus spp.). J. Agr. Food Chem., 49, 4761–4767.
  • Kisiel, W., Michalska, K. (2008). Lignans and sesquiterpenoids from Lactuca sibirica. Fitoterapia, 79, 241–244.
  • Koudela, M., Petříkova, K. (2007). Nutritional composition and yield of endive cultivars – Cichorium endivia L. Hortic. Sci., 34(1), 6–10.
  • Lako, J., Trenerry, V.C., Wahlqvist, M., Wattanapenpaiboon, N., Sotheeswaran, S., Premier, R. (2007). Phytochemical flavonols, carotenoides and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem., 101(4), 1727–1741.
  • Lee, S.K., Kader, A.A. (2000). Preharvest and postharvet factors influencing vitamin C content of horticultural crops. Postharv. Biol. Tec., 20(3), 207–220.
  • Li, Q., Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot., 67, 59–64
  • Liu, X., Ardo, S., Bunning, M., Parry, J., Zhou, K., Stushnoff, C., Stoniker, F., Yu, L., Kendall, P. (2007). Total phenolic and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT - Food Sci. Tech., 40, 552–557.
  • Llorach, R., Martınez-Sanchez, A., Tomas-Barberan, F.A., Gil, M., Ferreres, F. (2008). Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem., 108, 1028–1038.
  • Lucarini, M., D’Evoli, L., Tufi, S., Gabrielli, P., Paoletti, S., Di Ferdinandob, S., LombardiBocciaa, G. (2012). Influence of growing system on nitrate accumulation in two varieties of lettuce and red radicchio of Treviso. J. Sci. Food Agric., 92, 2796–2799.
  • Merlo, L., Ferretti, M., Passera, C., Ghisi, R. (1994). Effect of decreased irradiance on N and C metabolism in leaves and roots of maize. Physiol. Plant., 91, 72–80.
  • Murillo, E., Meléndez- Martínez, A., Porugal, F. (2010). Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chem., 122, 167–172.
  • Naczk, M., Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal., 41, 1523–1542.
  • Nowosielski, O. (1988). Metody oznaczania potrzeb nawożenia roślin ogrodniczych. PWRiL, Warszawa.
  • Oh, M.M., Carey, E.E., Rajashekar, C.B. (2009). Environmental stresses induce healthpromoting phytochemicals in lettuce. Plant Physiol. Bioch., 47, 578–583.
  • Peters, A.M., Van Amerongen, A. (1998). Relationship between levels of sesquiterpene lactones in chicory and sensory evaluation. J. Am. Soc. Hortc. Sci., 123, 326–329.
  • Polish Pharmacopoeia, VI (2002). PTF, Warszawa, 150, 896.
  • Ramakrishna, A., Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Sign. Behav., 6(11), 1720–31.
  • Reinink, K., van Nes, M., Groenwold, R. (1994). Genetic variation for nitrate content between cultivars of endive (Cichorium endiviae L.). Euphytica, 75, Kluwer Academic Publishers, 41– 48.
  • Printed in the Netherlands. Rekowska, E., Jurga-Szlempo, B. (2011). Comparison of the content of some chemical compounds in two endive cultivars grown on an open field (Cichorium endivia L.). J. Elem., 16(2), 247–253.
  • Riboli, E., Norat, T. (2003). Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr., 78, 559–569S.
  • Robards, K., Prenzler, P.D., Tucker, G., Swatsitang, P., Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chem., 66, 401–436.
  • Rossi, M., Giussani, E., Morelli, R., Scalzo, R., Nani, R.C., Torreggiani, D. (2003). Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Res. Int., 36, 999–1005.
  • Salazar, J., Velàsques, R., Qyesada, S., Piccinelli, A.L., Rastrelli, L. (2006). Chemical composition and antinutritional factors of Lycianthes synanthera leaves (chomte). Food Chem., 97, 343–348.
  • Santamaria, P. (2006). Nitrate in vegetables: toxicity, content, intake and EC regulation (review). J. Sci. Food Agric., 86(1), 10–17.
  • Tamme, T., Reinik, M.M., Roasto, M., Juhkam, K., Tenno, T., Kiis, A. (2006). Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population. Food Addit. Contam., 23, 355–361.
  • Tsormpatsidis, E., Henbest, R.G.C., Battey, N.H., Hadley, P. (2010). The influence of ultraviolet radiation on growth, photosynthesis and phenolic levels of green and red lettuce: potential for exploiting effects of ultraviolet radiation in a production system. Ann. Appl. Biol., 156, 357–366.
  • Tzortzakis, N.G. (2010). Potassium and calcium enrichment alleviate salinity-induced stress in hydroponically grown endives. Hort. Sci. (Prague), 37, 4, 155–162.
  • Wang, S.Y., Zheng, W. (2001). Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem., 49, 4977–4982.
  • Yen, G.C., Chen, J.H., Ho, C.T. (1995). Antioxidant activities of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem., 43, 27–32.
  • Yordanov, N.D., Novakova, E., Lubenova, S., 2001. Consecutive estimation of nitrate and nitrite ions in vegetables and fruits by electron paramagnetic resonance spectrometry. Anal. Chim. Acta, 437(1), 131–138.
  • Żukiewicz-Sobczak, W., Michalak-Majewska, M., Kalbarczyk, J. (2009). Pojemność antyoksydacyjna wybranych napojow owocowych. Bromat. Chem. Toksykol., 42, 3, 910–915.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cb5e3c92-e1b6-4a30-a0c6-93dbfe465703
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.