PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 50 | 1 |

Tytuł artykułu

Biomass of external mycelium of ectomycorrhizal fungi in Norway spruce stands in Poland

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Biomass of extramatrical mycorrhizal mycelium (EMM) was examined under canopies of mature Norway spruce trees grown in different forest stands in Poland. Two mountain forest sites (Brenna and Salmopol), one upland site (Zwierzyniec) and one lowland site (Mirachowo) have been investigated, using sand-filled mesh-bags method. The in-grow mesh-bags were buried in the soil for 12 months (since October up to the next October) or for 4 months (since June up to October) at four depths at each site: 5, 15, 30 and 45 cm (Brenna and Salmopol) or 60 cm (Zwierzyniec and Mirachowo). The mycelium biomass was estimated from the ergosterol content determined in the mesh-bags. The results indicated significant differences in EMM production and their vertical distribution between the mountain and the upland and lowland forest sites. The lowest EMM biomass was found at the experimental plot in the mountainious site Brenna. Considerable decrease of EMM biomass with the soil depth was recorded after 12 months of the mesh-bags incubation in soil in the upland and lowland sites, while in the mountain forests decrease of the EMM biomass in the lower soil depths diminished more gradually EMM biomass determined in the mesh-bags placed in soil at the upper 5 and 15 cm tended to be higher after 4 months than after 12 months of incubation period. Such results suggest that the time necessary for evaluation of EMM biomass in soil may be limited to the summer–autumn months, when the production of EMM is the highest. Variable stress factors can influence decreased ectomycorrhizal mycelium production and/or their destruction. Further research in different forest types and regions are needed for better understanding factors determining EMM biomass production and surviving in soil.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

50

Numer

1

Opis fizyczny

Article: 1063 [9 p.], fig.,ref.

Twórcy

autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • Institute of Environmental Biology, Kazimierz Wielki University, Al.Ossolinskich 12, 85-093 Bydgoszcz, Poland

Bibliografia

  • 1. Smith SE, Read DJ. Mycorrhizal symbiosis. London: Academic Press; 1997.
  • 2. Meyer FH. Distribution of ectomycorrhizae in native and man-made forests. In: Marks GC, Kozlowski TT, editors. Ectomycorrhizae. Their ecology and physiology. New York, NY. Academic Press; 1973. p. 79–105. http://dx.doi.org/10.1016/b978-0-12-472850-9.50009-8
  • 3. Peterson RL, Massicotte HB. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot. 2004;82:1074–1088. http://dx.doi.org/10.1139/b04-071
  • 4. Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil. 1994;159:89–102.
  • 5. Wallander H, Nillson LO, Hagerberg D, Bååth E. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol. 2001;151:753–760. http://dx.doi.org/10.1046/j.0028-646x.2001.00199.x
  • 6. Wallander H, Nilsson LO, Hagerberg D, Rosengren U. Direct estimates of C:N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soils. Soil Biol Biochem. 2003;35:997–999. http://dx.doi.org/10.1016/S0038-0717(03)00121-4
  • 7. Weete JD. Structure and function of sterols in fungi. Adv Lipid Res. 1989;23:115–167. http://dx.doi.org/10.1016/b978-0-12-024923-7.50007-8
  • 8. Nylund JE, Wallander H. Ergosterol analysis as a means of quantyfying mycorrhizal biomass. In: Norris JR, Read DJ, Varma AK, editors. Methods in microbiology. London: Academic Press; 1992. p. 77–88. (vol 24).
  • 9. Montgomery HJ, Monreal CM, Young JC, Seifert KA. Determination of soil fungal biomass from soil ergosterol analyses. Soil Biol Biochem. 2000;32:1207–1217. http://dx.doi.org/10.1016/S0038-0717(00)00037-7
  • 10. Ruzicka S, Edgerton D, Norman M, Hill T. The utility of ergosterol as a bioindicator of fungi in temperate soils. Soil Biol Biochem. 2000;32:989–1005. http://dx.doi.org/10.1016/S0038-0717(00)00009-2
  • 11. Wallander H, Nylund JE. Effect of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylvestris L. New Phytol. 1991;120:495–503. http://dx.doi.org/10.1111/j.1469-8137.1992.tb01798.x
  • 12. Ekblad A, Wallander H, Carlsson R, HussDanel K. Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytol. 1995;131:443–451. http://dx.doi.org/10.1007/s11104-013-1630-3
  • 13. Vargas R, Allen MF. Dynamics of fine root, fungal rhizomorphs, and soil respiration in a mixed temperate forest: integrating sensors and observations. Vadose Zone J. 2008;7:1055–1064. http://dx.doi.org/10.2136/vzj2007.0138
  • 14. Bahr A, Ellström M, Akselsson C, Ekblad A, Mikusinska A, Wallander H. Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage. Soil Biol Biochem. 2013;59:38–48. http://dx.doi.org/10.1016/j.soilbio.2013.01.004
  • 15. Nilsson LO, Wallander H. Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol. 2003;158:409–416. http://dx.doi.org/10.1007/s11104-013-1630-3
  • 16. Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD, Sims SE. Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phytol. 2006;171:179–186. http://dx.doi.org/10.1111/j.1469-8137.2006.01742.x
  • 17. Saravesi K, Markkola AM, Rautio P, Roitto M, Tuomi J. Defoliation causes parallel temporal responses in a host tree and its fungal symbionts. Oecologia. 2008;156:117–123. http://dx.doi.org/10.1007/s00442-008-0967-4
  • 18. Ekblat A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, et al. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil. 2013;366:1–27. http://dx.doi.org/10.1007/s11104-013-1630-3
  • 19. Wallander H, Johansson U, Sterkenburg E, Brandström Durling M, Lindahl BD. Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol. 2010;187:1124–1134. http://dx.doi.org/10.1111/j.1469-8137.2010.03324.x
  • 20. Mikusinska A, Persson T, Taylor AFS, Ekblad A. Response of ectomycorrhizal extramatrical mycelium production and isotopic composition to in-growth bag size and soil fauna. Soil Biol Biochem. 2013;66:154–162. http://dx.doi.org/10.1016/j.soilbio.2013.07.009
  • 21. Wallander H, Ekblad A, Godbold DL, Johnson D, Bahr A, Baldrian P, et al. Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils – a review. Soil Biol Biochem. 2013;57:1034–1047. http://dx.doi.org/10.1016/j.soilbio.2012.08.027
  • 22. Wallander H, Göransson H, Rosengren U. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia. 2004;139:89–97. http://dx.doi.org/10.1007/s00442-003-1477-z
  • 23. Karliński L, Kieliszewska-Rokicka B. Diversity of spruce ectomycorrhizal morphotypes in four mature forest stands in Poland. Dendrobiology. 2004;51:25–35.
  • 24. Kieliszewska-Rokicka B, Rudawska M, Staszewski T, Kurczyńska E, Karliński L, Kubiesa P. Ectomycorrhizal associations in Norway spruce stands influenced by long lasting air pollution (Silesian Beskid Mountains, Poland). Ekológia (Bratislava). 2003;22(1 suppl):156–163.
  • 25. Dmuchowski W, Wawrzoniak J. Spatial distribution of sulphur and nitrogen content in needles of Scots pine (Pinus sylvestris L.) as related to air pollution and tree stands vitality in Poland. In: Solon J, Roo-Zielińska E, Bytnerowicz A, editors. Climate and atmospheric deposition studies in forests: international conference, 6–9 October 1992, Nieborów, Poland. Warsaw: Institute of Geography and Spatial Organization, Polish Academy of Sciences; 1994. p. 177–186. (Conference Papers – Institute of Geography and Spatial Organization; vol 19).
  • 26. Hagerberg D, Thelin G, Wallander H. The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant Soil. 2003;252:279–290. http://dx.doi.org/10.1023/A:1024719607740
  • 27. Wallander H, Ekblad A, Bergh J. Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. For Ecol Manage. 2011;262:999–1007. http://dx.doi.org/10.1016/j.foreco.2011.05.035
  • 28. Neumann J, Mazner E. Biomass of extramatrical ectomycorrhizal mycelium and fine roots in a young Norway spruce stand – a study using ingrowth bags with different substrates. Plant Soil. 2013;371:435–446. http://dx.doi.org/10.1007/s11104-013-1701-5
  • 29. Bochenek W, Dedo J, Marczewski W. Zróżnicowanie długości i warunków termicznych okresu wegetacyjnego na obszarze Beskidów i Pogórzy w latach 2001–2011 na podstawie danych zgromadzonych w bazie GLDAS. Monitoring Środowiska Przyrodniczego. 2013;14:79–85.
  • 30. Grodzińska K, Szarek-Łukaszewska G. Polish mountain forests: past, present and future. Environ Pollut. 1997;98:369–374. http://dx.doi.org/10.1016/S0269-7491(97)00145-0
  • 31. Staszewski T, Łukasik W, Godzik S, Szdzuj J, Uziębło AK. Climatic and air pollution gradient studies on coniferous trees health status, needles wettability and chemical characteristics. Chemosphere. 1998;36:901–905. http://dx.doi.org/10.1016/S0045-6535(97)10145-X
  • 32. Pennanen T, Frostegård Å, Fritze H, Bååth E. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol. 1996;2:420–428.
  • 33. Cox F, Barsoum N, Bidartondo MI, Børja I, Lilleskov E, Nilsson LO, et al. A leap forward in geographic scale for forest ectomycorrhizal fungi. Ann For Sci. 2010;67:200. http://dx.doi.org/10.1051/forest/2009107
  • 34. Tedersoo L, Suvi T, Jairus T, Koljalg U. Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol. 2008;10:1189–1201. http://dx.doi.org/10.1111/j.1462-2920.2007.01535.x
  • 35. Dickie IA, Xu B, Koide RT. Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol. 2002;156:527–535. http://dx.doi.org/10.1046/j.1469-8137.2002.00535.x
  • 36. Rosling A, Landweert R, Lindahl BD, Larsson KH, Kuyper TW, Taylor AFS, et al. Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol. 2003;159:775–783. http://dx.doi.org/10.1046/j.1469-8137.2002.00535.x
  • 37. Agerer R. Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza. 2001;11:107–114. http://dx.doi.org/10.1007/s005720100108
  • 38. Olsson PA, Bååth E, Jakobsen I, Söderström B. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res. 1995;99:623–629. http://dx.doi.org/10.1016/S0953-7562(09)80723-5
  • 39. Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77. http://dx.doi.org/10.1007/s11104-008-9877-9
  • 40. Schmid I, Kazda M. Root distribution of Norway spruce in monospecyfic and mixed stands of different soils. For Ecol Manage. 2002;159:37–47. http://dx.doi.org/10.1016/S0378-1127(01)00708-3
  • 41. Högberg MN, Högberg P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol. 2002;154:791–795. http://dx.doi.org/10.1046/j.1469-8137.2002.00417.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-cabb8223-8b5f-4bfb-ae38-1b315cf2bbd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.